Constitutive modeling of deformation behavior of high-entropy alloys with face-centered cubic crystal structure

被引:56
作者
Jang, Min Ji [1 ,2 ]
Ahn, Dong-Hyun [3 ]
Moon, Jongun [1 ,2 ]
Bae, Jae Wung [1 ,2 ]
Yim, Dami [1 ,2 ]
Yeh, Jien-Wei [4 ]
Estrin, Yuri [5 ,6 ]
Kim, Hyoung Seop [1 ,2 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Ctr High Entropy Alloys, Pohang, South Korea
[3] KAERI, Nucl Mat Safety Res Div, Daejeon, South Korea
[4] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan
[5] Monash Univ, Dept Mat Sci Engn, Clayton, Vic, Australia
[6] NUST MISIS, Lab Nanostruct Hybrid Mat, Moscow, Russia
基金
新加坡国家研究基金会;
关键词
Constitutive model; high-entropy alloys; plastic deformation; work hardening; twinning; COCRFEMNNI HIGH-ENTROPY; STACKING-FAULT ENERGY; MECHANICAL-PROPERTIES; MICROSTRUCTURE; NANOCRYSTALLINE; PLASTICITY; DIFFRACTION; STABILITY; EVOLUTION; DESIGN;
D O I
10.1080/21663831.2017.1292325
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A constitutive model based on the dislocation glide and deformation twinning is adapted to face-centered cubic high-entropy alloys (HEAs) as exemplified by the CrMnFeCoNi system. In this model, the total dislocation density is considered as the only internal variable, while the evolution equation describing its variation during plastic deformation is governed by the volume fraction of twinned material. The suitability of the model for describing the strain hardening behavior of HEAs was verified experimentally through compression tests on alloy CrMnFeCoNi and its microstructure characterization by electron backscatter diffraction and X-ray diffraction using synchrotron radiation. [GRAPHICS] . IMPACT STATEMENT We adopted a constitutive model based on dislocation density and twin volume fraction evolution, to analyze the deformation behavior of the high-entropy alloy CrMnFeCoNi theoretically.
引用
收藏
页码:350 / 356
页数:7
相关论文
共 36 条
[1]   A semi-phenomenological constitutive model for hcp materials as exemplified by alpha titanium [J].
Ahn, Dong-Hyun ;
Kim, Hyoung Seop ;
Estrin, Yuri .
SCRIPTA MATERIALIA, 2012, 67 (02) :121-124
[2]   High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J].
Bouaziz, O. ;
Allain, S. ;
Scott, C. P. ;
Cugy, P. ;
Barbier, D. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2011, 15 (04) :141-168
[3]   Modelling of TWIP effect on work-hardening [J].
Bouaziz, O ;
Guelton, N .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 319 :246-249
[4]   Microstructure and electrochemical properties of high entropy alloys - a comparison with type-304 stainless steel [J].
Chen, YY ;
Duval, T ;
Hung, UD ;
Yeh, JW ;
Shih, HC .
CORROSION SCIENCE, 2005, 47 (09) :2257-2279
[5]   Design of a twinning-induced plasticity high entropy alloy [J].
Deng, Y. ;
Tasan, C. C. ;
Pradeep, K. G. ;
Springer, H. ;
Kostka, A. ;
Raabe, D. .
ACTA MATERIALIA, 2015, 94 :124-133
[6]   A UNIFIED PHENOMENOLOGICAL DESCRIPTION OF WORK-HARDENING AND CREEP BASED ON ONE-PARAMETER MODELS [J].
ESTRIN, Y ;
MECKING, H .
ACTA METALLURGICA, 1984, 32 (01) :57-70
[7]   Tensile properties of high- and medium-entropy alloys [J].
Gali, A. ;
George, E. P. .
INTERMETALLICS, 2013, 39 :74-78
[8]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[9]   Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy [J].
Huang, Shuo ;
Li, Wei ;
Lu, Song ;
Tian, Fuyang ;
Shen, Jiang ;
Holmstrom, Erik ;
Vitos, Levente .
SCRIPTA MATERIALIA, 2015, 108 :44-47
[10]   A constitutive model for the tensile behaviour of TWIP steels: Composition and temperature dependencies [J].
Kang, Jee-Hyun ;
Ingendahl, Tobias ;
Bleck, Wolfgang .
MATERIALS & DESIGN, 2016, 90 :340-349