NEW PERIODIC SOLITARY-WAVE SOLUTIONS TO THE (3+1)-DIMENSIONAL KADOMTSEV-PETVIASHVILI EQUATION

被引:1
作者
Li, Zitian [1 ]
Dai, Zhengde [2 ]
Liu, Jun [1 ]
机构
[1] Qujing Normal Univ, Coll Math & Informat Sci, Qujing Yunnan 655011, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunmingyunnan 650091, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended homoclinic test; Doubly periodic; Soliton; Periodic solitary wave; EXP-FUNCTION METHOD; HEAT-CONDUCTION EQUATIONS; EXPLICIT SOLUTIONS; GENERALIZED FORM; VAKHNENKO;
D O I
10.3390/mca15050877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By the extended homoclinic test technique, explicit solutions of the (3+1)-dimensional Kadomtsev-Petviashvili(KP) equation are obtained. These solutions include doubly periodic wave solutions, doubly soliton solutions and periodic solitary-wave solutions. It is shown that the extended homoclinic test technique is a straightforward and powerful mathematical tool for solving nonlinear evolution equation.
引用
收藏
页码:877 / 882
页数:6
相关论文
共 12 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]   Explicit homoclinic tube solutions and chaos for Zakharov system with periodic boundary [J].
Dai, ZD ;
Huang, J ;
Jiang, MR .
PHYSICS LETTERS A, 2006, 352 (4-5) :411-415
[3]   Exact periodic solitary-wave solution for KdV equation [J].
School of Mathematics and Physics, Yunnan University, Kunming 650091, China ;
不详 ;
不详 .
Chin. Phys. Lett., 2008, 5 (1531-1533) :1531-1533
[4]   Applications of HTA and EHTA to YTSF Equation [J].
Dai, Zhengde ;
Liu, Jun ;
Li, Donglong .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) :360-364
[5]  
Esen A, 2009, INT J NONLIN SCI NUM, V10, P1355
[6]   Comment on "on the extended applications of homogeneous balance method" [J].
Feng, ZS .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (02) :593-596
[7]  
Hosseini H, 2010, INT J NONLIN SCI NUM, V11, P285
[8]  
Kabir MM, 2009, INT J NONLIN SCI NUM, V10, P1307
[9]   An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations [J].
Parkes, EJ ;
Duffy, BR .
COMPUTER PHYSICS COMMUNICATIONS, 1996, 98 (03) :288-300
[10]   Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method [J].
Wu, Xu-Hong ;
He, Ji-Huan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) :966-986