GTM with Latent Variable Dependent Length-Scale and Variance

被引:0
作者
Yamaguchi, Nobuhiko [1 ]
机构
[1] Saga Univ, Fac Sci & Engn, Dept Informat Sci, Saga 8408502, Japan
来源
2013 CACS INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS) | 2013年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Generative Topographic Mapping (GTM) is a data visualization technique that uses a nonlinear topographically preserving mapping from latent to data space. Conventional GTM models can be interpreted as a probabilistic model using Gaussian process prior, and therefore the choice of covariance function in the Gaussian process prior has an important effect on the performance. However the conventional GTM models use a covariance function with a constant length-scale for the whole latent space, and therefore fail to adapt to variable smoothness in the nonlinear topographically preserving mapping. In this paper, we propose GTM with latent variable dependent length-scale (GTM-LDLV), which can adjust the smoothness in local areas of the latent space individually.
引用
收藏
页码:532 / 538
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 1991, 9109 PURD U DEP STAT
[2]   Developments of the generative topographic mapping [J].
Bishop, CM ;
Svensén, M ;
Williams, CKI .
NEUROCOMPUTING, 1998, 21 (1-3) :203-224
[3]   GTM: The generative topographic mapping [J].
Bishop, CM ;
Svensen, M ;
Williams, CKI .
NEURAL COMPUTATION, 1998, 10 (01) :215-234
[4]  
Blake C. L., 1998, Uci repository of machine learning databases
[5]  
Gibbs M.N., 1997, Bayesian Gaussian Processes for Regression and Classification
[6]   Latent variable models for the topographic organisation of discrete and strictly positive data [J].
Girolami, M .
NEUROCOMPUTING, 2002, 48 :185-198
[7]  
Kohonen T., 2001, INFORM SCIENCES
[8]  
Olier I., 2008, J MATH MODELLING ALG, V7, P371
[9]   Advances in clustering and visualization of time series using GTM through time [J].
Olier, Ivan ;
Vellido, Alfredo .
NEURAL NETWORKS, 2008, 21 (07) :904-913
[10]  
Paciorek CJ, 2004, ADV NEUR IN, V16, P273