Uniqueness problem and growth property for Fourier transform of functions in the upper half-space

被引:0
作者
Xu, Zuoliang [1 ]
Zhang, Yanhui [2 ]
机构
[1] Renmin Univ China, Sch Math, Beijing, Peoples R China
[2] Beijing Technol & Business Univ, Sch Math & Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Yongzhi Steve Xu; Fourier transform; uniqueness; C class; HARMONIC-FUNCTIONS; THEOREMS;
D O I
10.1080/00036811.2020.1729357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we non-trivially prove the higher dimensional version of uniqueness theorem that established by M. M. Dzhrbashyan in the complex plane . We further prove the growth property involving of the Fourier transform of functions in in the upper half-space of which partly generalizes the result in Levi [Lectures on entire functions. Providence (RI): American Mathematical Society; 1996].
引用
收藏
页码:100 / 107
页数:8
相关论文
共 20 条