Developing an advanced dynamic risk analysis method for fire-related domino effects

被引:82
|
作者
Zeng, Tao [1 ,2 ]
Chen, Guohua [1 ,2 ]
Yang, Yunfeng [1 ,2 ,5 ]
Chen, Peizhu [1 ,2 ]
Reniers, Genserik [3 ,4 ,5 ]
机构
[1] South China Univ Technol, Inst Safety Sci & Engn, Guangzhou 510640, Peoples R China
[2] Guangdong Prov Sci & Technol Collaborat Innovat C, Guangzhou 510640, Peoples R China
[3] Delft Univ Technol, Fac Technol Policy & Management, Safety & Secur Sci Grp, NL-2628 BX Delft, Netherlands
[4] Univ Antwerp, Fac Appl Econ, Antwerp Res Grp Safety & Secur ARGoSS, B-2000 Antwerp, Belgium
[5] KULeuven, CEDON, Campus Brussels, B-1000 Brussels, Belgium
基金
中国国家自然科学基金;
关键词
Domino effect; Dynamic Bayesian Network; Synergistic effect; Temporal evolution; Safety barrier; PROCESS PLANTS; VULNERABILITY; SAFETY; PREVENTION; FUTURE;
D O I
10.1016/j.psep.2019.11.029
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Domino effects are typically high impact low probability (HILP) accidents, whereby escalation effects triggered by fires are most frequent. The evolution of fire-related domino effects depends on synergistic effects and the performance of safety barriers, but those factors usually are time-dependent. In the present study, a methodology is developed to provide more accurate probabilities related to domino effects, by considering the temporal evolution of escalation vectors caused by time-dependent factors. The Dynamic Bayesian Network (DBN) approach is applied both to model the spatial-temporal propagation pattern of domino effects and to estimate the dynamic probabilities of domino chains. The methodology is illustrated with a case study to determine the dynamic aspect of the probabilities of domino effects considering the impact of add-on (active and passive) safety barriers and taking into account synergistic effects. The critical units for facilitating domino propagation have been identified by the analysis of posterior probabilities, and further validated using graph theory. The methodology will be helpful for risk management and emergency decision-making of any chemical industrial area. (C) 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 43 条
  • [42] Risk assessment of liquefied natural gas storage tank leakage using failure mode and effects analysis with Fermatean fuzzy sets and CoCoSo method
    Yu, Jianxing
    Ding, Hongyu
    Yu, Yang
    Wu, Shibo
    Zeng, Qingze
    Xu, Ya
    APPLIED SOFT COMPUTING, 2024, 154
  • [43] Effects of growth hormone therapy on bone density and fracture risk in age-related osteoporosis in the absence of growth hormone deficiency: a systematic review and meta-analysis
    Barake, Maya
    Arabi, Asma
    Nakhoul, Nancy
    Fuleihan, Ghada El-Hajj
    El Ghandour, Sarah
    Klibanski, Anne
    Tritos, Nicholas A.
    ENDOCRINE, 2018, 59 (01) : 39 - 49