Uniting Two Control Lyapunov Functions for Affine Systems

被引:32
作者
Andrieu, Vincent [1 ,2 ]
Prieur, Christophe [3 ,4 ]
机构
[1] Univ Lyon, F-69622 Villeurbanne, France
[2] Univ Lyon 1, CNRS, UMR 5007, F-69100 Villeurbanne, France
[3] CNRS, LAAS, F-31077 Toulouse, France
[4] Dept Automat Control, GIPSA lab, F-38400 St Martin Dheres, France
关键词
Lyapunov stabilization; nonlinear systems; optimal control; uniting problems; ROBUST STABILIZATION; GLOBAL CONTROLLERS; OPTIMALITY; FEEDBACK; DESIGN;
D O I
10.1109/TAC.2010.2049689
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of piecing together two control Lyapunov functions (CLFs) is addressed. The first CLF characterizes a local asymptotic controllability property toward the origin, whereas the second CLF is related to a global asymptotic controllability property with respect to a compact set. A sufficient condition is expressed to obtain an explicit solution. This sufficient condition is shown to be always satisfied for a linear second order controllable system. In a second part, it is shown how this uniting CLF problem can be used to solve the problem of piecing together two stabilizing control laws. Finally, this framework is applied on a numerical example to improve local performance of a globally stabilizing state feedback.
引用
收藏
页码:1923 / 1927
页数:5
相关论文
共 17 条
[1]   FLOW STABILITY OF PATCHY VECTOR FIELDS AND ROBUST FEEDBACK STABILIZATION [J].
Ancona, Fabio ;
Bressan, Alberto .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (05) :1455-1476
[2]  
ANDRIEU V, 2009, UNITING 2 CONTROL LY
[3]   Homogeneous approximation, recursive observer design, and output feedback [J].
Andrieu, Vincent ;
Praly, Laurent ;
Astolfi, Alessandro .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1814-1850
[4]  
[Anonymous], 1995, NONLINEAR ADAPTIVE C
[5]  
[Anonymous], NONLINEAR ANAL THEOR
[6]  
[Anonymous], 2004, P IEEE INT S COMPUTE
[7]   Inverse optimality in robust stabilization [J].
Freeman, RA ;
Kokotovic, PV .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (04) :1365-1391
[8]   A UNIVERSAL FORMULA FOR STABILIZATION WITH BOUNDED CONTROLS [J].
LIN, YD ;
SONTAG, ED .
SYSTEMS & CONTROL LETTERS, 1991, 16 (06) :393-397
[9]   Adding integrations, saturated controls, and stabilization for feedforward systems [J].
Mazenc, F ;
Praly, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (11) :1559-1578
[10]   Backstepping design with local optimality matching [J].
Pan, ZG ;
Ezal, K ;
Krener, AJ ;
Kokotovic, PV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) :1014-1027