Density-dependent diffusion and refuge in a spatial Rosenzweig-MacArthur model: Stability results

被引:2
|
作者
Rodriguez, Leoncio Q. [1 ]
Gordillo, Luis F. [2 ]
机构
[1] Pontificia Univ Javeriana, Dept Matemat & Estadist, Bogota, DC, Colombia
[2] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
Rosenzweig-MacArthur model; Transcritical bifurcation; Refuge zone; Holling type II functional response; CROSS-DIFFUSION;
D O I
10.1016/j.jmaa.2022.126174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we present a study of the solutions associated to a particular spatial extension of the Rosenzweig-MacArthur model for predator and prey. The analysis presented here shows that positive steady state solutions emerge via a transcritical bifurcation mechanism, in accordance with the insight obtained from previous numerical and analytical results. In the model under discussion, prey is assumed to move avoiding crowds via a density-dependent diffusion and also incorporates the existence of a refuge zone, where predators cannot consume prey. Saturation in prey consumption is also included through a Holling type II functional response. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Stability of fronts in the diffusive Rosenzweig-MacArthur model
    Ghazaryan, Anna
    Lafortune, Stephane
    Latushkin, Yuri
    Manukian, Vahagn
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (04)
  • [2] BIFURCATION AND OVEREXPLOITATION IN ROSENZWEIG-MACARTHUR MODEL
    Lin, Xiaoqing
    Xu, Yancong
    Gao, Daozhou
    Fan, Guihong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 690 - 706
  • [3] Large speed traveling waves for the Rosenzweig-MacArthur predator-prey model with spatial diffusion
    Ducrot, Arnaud
    Liu, Zhihua
    Magal, Pierre
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 415
  • [4] BIFURCATIONS AND HYDRA EFFECTS IN ROSENZWEIG-MACARTHUR MODEL
    Lin, Xiaoqing
    Yang, Yue
    Xu, Yancong
    He, Mu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 606 - 622
  • [5] Dynamical analysis of a fractional-order Rosenzweig-MacArthur model incorporating a prey refuge
    Moustafa, Mahmoud
    Mohd, Mohd Hafiz
    Ismail, Ahmad Izani
    Abdullah, Farah Aini
    CHAOS SOLITONS & FRACTALS, 2018, 109 : 1 - 13
  • [6] Population games with instantaneous behavior and the Rosenzweig-MacArthur model
    Frolich, Emil F.
    Thygesen, Uffe H.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2022, 85 (05)
  • [7] Dynamics of the generalized Rosenzweig-MacArthur model in a changing and patchy environment
    Lu, Min
    Xiang, Chuang
    Huang, Jicai
    Ruan, Shigui
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 465
  • [8] PATTERN FORMATION IN ROSENZWEIG-MACARTHUR MODEL WITH PREY-TAXIS
    Zhang, Yuanyuan
    Xia, Li
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (01) : 97 - 115
  • [9] The Rosenzweig-MacArthur system via reduction of an individual based model
    Kruff, Niclas
    Lax, Christian
    Liebscher, Volkmar
    Walcher, Sebastian
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 78 (1-2) : 413 - 439
  • [10] Global Harvesting and Stocking Dynamics in a Modified Rosenzweig-MacArthur Model
    Yang, Yue
    Xu, Yancong
    Meng, Fanwei
    Rong, Libin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)