The bondage number of random graphs

被引:0
作者
Mitsche, Dieter [1 ]
Perez-Gimenez, Xavier [2 ]
Pralat, Pawel [2 ]
机构
[1] Univ Nice Sophia Antipolis, Lab JA Dieudonne, F-06189 Nice, France
[2] Ryerson Univ, Dept Math, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
random graph; bondage number; domination number;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A dominating set of a graph is a subset D of its vertices such that every vertex not in D is adjacent to at least one member of D. The domination number of a graph G is the number of vertices in a smallest dominating set of G. The bondage number of a nonempty graph G is the size of a smallest set of edges whose removal from G results in a graph with domination number greater than the domination number of G. In this note, we study the bondage number of the binomial random graph G(n, p). We obtain a lower bound that matches the order of the trivial upper bound. As a side product, we give a one-point concentration result for the domination number of G(n, p) under certain restrictions.
引用
收藏
页数:27
相关论文
共 9 条
[1]  
[Anonymous], 2000, WIL INT S D, DOI 10.1002/9781118032718
[2]  
[Anonymous], 2001, RANDOM GRAPHS
[3]   DOMINATION ALTERATION SETS IN GRAPHS [J].
BAUER, D ;
HARARY, F ;
NIEMINEN, J ;
SUFFEL, CL .
DISCRETE MATHEMATICS, 1983, 47 (2-3) :153-161
[4]   THE BONDAGE NUMBER OF A GRAPH [J].
FINK, JF ;
JACOBSON, MS ;
KINCH, LF ;
ROBERTS, J .
DISCRETE MATHEMATICS, 1990, 86 (1-3) :47-57
[5]   ON THE CONCENTRATION OF THE DOMINATION NUMBER OF THE RANDOM GRAPH [J].
Glebov, Roman ;
Liebenau, Anita ;
Szabo, Tibor .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) :1186-1206
[6]   BOUNDS ON THE BONDAGE NUMBER OF A GRAPH [J].
HARTNELL, BL ;
RALL, DF .
DISCRETE MATHEMATICS, 1994, 128 (1-3) :173-177
[7]  
WALIKAR HB, 1979, NATL ACAD SCI LETT, V2, P70
[8]  
Wieland B., 2001, J COMBIN, V8, P37
[9]  
Xu J. -M., 2013, Int. J. Combin., V2013