RENORMALIZATION OF THE TWO-DIMENSIONAL STOCHASTIC NONLINEAR WAVE EQUATIONS

被引:53
作者
Gubinelli, Massimiliano [1 ,2 ]
Koch, Herbert [3 ]
Oh, Tadahiro [4 ,5 ]
机构
[1] Univ Bonn, Hausdorff Ctr Math, Endenicher Allee 60, D-53115 Bonn, Germany
[2] Univ Bonn, Inst Angewandte Math, Endenicher Allee 60, D-53115 Bonn, Germany
[3] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
[4] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[5] Maxwell Inst Math Sci, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
基金
欧洲研究理事会;
关键词
Stochastic nonlinear wave equation; nonlinear wave equation; renormalization; Wick ordering; Hermite polynomial; white noise;
D O I
10.1090/tran/7452
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the two-dimensional stochastic nonlinear wave equations (SNLW) with an additive space-time white noise forcing. In particular, we introduce a time-dependent renormalization and prove that SNLW is pathwise locally well-posed. As an application of the local well-posedness argument, we also establish a weak universality result for the renormalized SNLW.
引用
收藏
页码:7335 / 7359
页数:25
相关论文
共 32 条
[1]  
Albeverio S., 1996, STOCHASTICS STOCHAST, V56, P127
[2]  
[Anonymous], 2006, CBMS REGIONAL C SERI, DOI DOI 10.1090/CBMS/106
[3]  
[Anonymous], 1966, MATH THEORY ELEMENTA
[4]  
[Anonymous], 2006, INTRO STOCHASTIC INT
[5]  
Bass Richard F., 2011, Cambridge Series on Statistical and Probabilistic Mathematics, V33
[6]   Modulation spaces, Wiener amalgam spaces, and Brownian motions [J].
Benyi, Arpad ;
Oh, Tadahiro .
ADVANCES IN MATHEMATICS, 2011, 228 (05) :2943-2981
[7]   Invariant measures for the 2D-defocusing nonlinear Schrodinger equation [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :421-445
[8]  
Burq N., ANN FAC SCI TOULOUSE
[9]   Random data Cauchy theory for supercritical wave equations I: local theory [J].
Burq, Nicolas ;
Tzvetkov, Nikolay .
INVENTIONES MATHEMATICAE, 2008, 173 (03) :449-475
[10]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331