Numerical Modeling of CO2, Water, Sodium Chloride, and Magnesium Carbonates Equilibrium to High Temperature and Pressure

被引:4
|
作者
Li, Jun [1 ]
Li, Xiaochun [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Inst Rock & Soil Mech, Wuhan 430071, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
thermodynamic modeling; CO2; storage; MgCO3; minerals; phase behaviors; mineral solubility; solubility; MINERAL SOLUBILITIES; NATURAL-WATERS; OSMOTIC COEFFICIENTS; THERMODYNAMIC MODEL; NACL CONCENTRATIONS; AQUEOUS-SOLUTIONS; 1000; BAR; SYSTEM; PREDICTION; ELECTROLYTES;
D O I
10.3390/en12234533
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, a thermodynamic model of CO2-H2O-NaCl-MgCO3 systems is developed. The new model is applicable for 0-200 degrees C, 1-1000 bar and halite concentration up to saturation. The Pitzer model is used to calculate aqueous species activity coefficients and the Peng-Robinson model is used to calculate fugacity coefficients of gaseous phase species. Non-linear equations of chemical potentials, mass conservation, and charge conservation are solved by successive substitution method to achieve phase existence, species molality, pH of water, etc., at equilibrium conditions. From the calculated results of CO2-H2O-NaCl-MgCO3 systems with the new model, it can be concluded that (1) temperature effects are different for different MgCO3 minerals; landfordite solubility increases with temperature; with temperature increasing, nesquehonite solubility decreases first and then increases at given pressure; (2) CO2 dissolution in water can significantly enhance the dissolution of MgCO3 minerals, while MgCO3 influences on CO2 solubility can be ignored; (3) MgCO3 dissolution in water will buffer the pH reduction due to CO2 dissolution.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Phase Equilibrium of CO2 Hydrate with Rubidium Chloride Aqueous Solution
    Kasai, Ryonosuke
    Kamiya, Leo
    Ohmura, Ryo
    SEPARATIONS, 2025, 12 (01)
  • [22] Solubility of sodium chloride in water under high pressure
    Sawamura, Seiji
    Egoshi, Nobuaki
    Setoguchi, Yoshihiro
    Matsuo, Hiroshi
    FLUID PHASE EQUILIBRIA, 2007, 254 (1-2) : 158 - 162
  • [23] Numerical modeling of the Aquistore CO2 storage project
    Jiang, Tao
    Pekot, Lawrence J.
    Jin, Lu
    Peck, Wesley D.
    Gorecki, Charles D.
    Worth, Kyle
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 4886 - 4895
  • [24] Rigorous modeling of CO2 equilibrium absorption in MEA, DEA, and TEA aqueous solutions
    Ghiasi, Mohammad M.
    Mohammadi, Amir H.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2014, 18 : 39 - 46
  • [25] Numerical study of CO2 hydrate dissolution rates in the ocean: Effect of pressure, temperature, and salinity
    Kyung, Daeseung
    Ji, Sukwon
    Lee, Woojin
    ADVANCES IN ENVIRONMENTAL RESEARCH-AN INTERNATIONAL JOURNAL, 2015, 4 (01): : 17 - 24
  • [26] Thermodynamic Modeling Study on Phase Equilibrium of Gas Hydrate Systems for CO2 Capture
    Banafi, Ahmad
    Mohamadi-Baghmolaei, Mohamad
    Hajizadeh, Abdollah
    Azin, Reza
    Izadpanah, Amir Abbas
    JOURNAL OF SOLUTION CHEMISTRY, 2019, 48 (11-12) : 1461 - 1487
  • [27] Ab initio thermodynamics of magnesium carbonates and hydrates in water-saturated supercritical CO2 and CO2-rich regions
    Chaka, Anne M.
    Felmy, Andrew R.
    Qafoku, Odeta
    CHEMICAL GEOLOGY, 2016, 434 : 1 - 11
  • [28] Experimental studies and modeling of CO2 solubility in high temperature aqueous CaCl2, MgCl2, Na2SO4, and KCl solutions
    Zhao, Haining
    Dilmore, Robert M.
    Lvov, Serguei N.
    AICHE JOURNAL, 2015, 61 (07) : 2286 - 2297
  • [29] CO2 capture with aqueous solution of sodium glycinate: Modeling using an ensemble method
    Saghafi, Hamidreza
    Ghiasi, Mohammad M.
    Mohammadi, Amir H.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 62 : 23 - 30
  • [30] The influence of Na2SO4 on the CO2 solubility in water at high pressure
    Bermejo, MD
    Martín, A
    Florusse, LJ
    Peters, CJ
    Cocero, MJ
    FLUID PHASE EQUILIBRIA, 2005, 238 (02) : 220 - 228