Activation of adenosine A1 receptor attenuates cardiac hypertrophy and prevents heart failure in murine left ventricular pressure-overload model

被引:111
|
作者
Liao, YL
Takashima, S
Asano, Y
Asakura, M
Ogai, A
Shintani, Y
Minamino, T
Asanuma, H
Sanada, S
Kim, J
Ogita, H
Tomoike, H
Hori, M
Kitakaze, M
机构
[1] Natl Cardiovasc Ctr, Cardiovasc Div Internal Med, Osaka 5658565, Japan
[2] Osaka Univ, Grad Sch Med, Dept Internal Med & Therapeut, Osaka, Japan
关键词
adenosine; cardiomyopathy; echocardiography; heart failure; myocytes;
D O I
10.1161/01.RES.0000094744.88220.62
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Sympathomimetic stimulation, angiotensin II, or endothelin-1 is considered to be an essential stimulus mediating ventricular hypertrophy. Adenosine is known to protect the heart from excessive catecholamine exposure, reduce production of endothelin-1, and attenuate the activation of the renin-angiotensin system. These findings suggest that adenosine may also attenuate myocardial hypertrophy. To verify this hypothesis, we examined whether activation of adenosine receptors can attenuate cardiac hypertrophy and reduce the risk of heart failure. Our in vitro study of neonatal rat cardiomyocytes showed that 2-chloroadenosine (CADO), a stable adenosine analogue, inhibits protein synthesis of cardiomyocytes induced by phenylephrine, endothelin-1, angiotensin II, or isoproterenol, which were mimicked by the stimulation of adenosine A(1) receptors. For our in vivo study, cardiac hypertrophy was induced by transverse aortic constriction (TAC) in C57BL/6 male mice. Four weeks after TAC, both heart to body weight ratio (6.80+/-0.18 versus 8.34+/-0.33 mg/g, P<0.0001) as well as lung to body weight ratio (6.23+/-0.27 versus 10.03+/-0.85 mg/g, P<0.0001) became significantly lower in CADO-treated mice than in the TAC group. Left ventricular fractional shortening and left ventricular dP/dt(max) were improved significantly by CADO treatment. Similar results were obtained using the selective adenosine A(1) agonist N-6-cyclopentyladenosine (CPA). A nonselective adenosine antagonist, 8-(p-sulfophenyl)-theophylline, and a selective adenosine A(1) antagonist, 8-cyclopentyl-1,3-dipropylxanthine, eliminated the antihypertrophic effect of CADO and CPA, respectively. The plasma norepinephrine level was decreased and myocardial expression of regulator of G protein signaling 4 was upregulated in CADO-treated mice. These results indicate that the stimulation of adenosine receptors attenuates both the cardiac hypertrophy and myocardial dysfunction via adenosine A(1) receptor-mediated mechanisms.
引用
收藏
页码:759 / 766
页数:8
相关论文
共 50 条
  • [21] Selective ETA receptor blockade prevents left ventricular remodeling and deterioration of cardiac function in experimental heart failure
    Mulder, P
    Richard, V
    Bouchart, F
    Derumeaux, G
    Münter, K
    Thuillez, C
    CARDIOVASCULAR RESEARCH, 1998, 39 (03) : 600 - 608
  • [22] Cardiomentopexy Slows Progression to Heart Failure After Pressure Overload-induced Left Ventricular Hypertrophy in Rats
    Wang, Jian
    Zhang, Qing-Jun
    Pirolli, Timothy
    Liu, Zhi-Ping
    Forbess, Joseph
    CIRCULATION, 2017, 136
  • [23] Cardiomentopexy Slows Progression to Heart Failure After Pressure Overload-induced Left Ventricular Hypertrophy in Rats
    Wang, Jian
    Zhang, Qing-Jun
    Pirolli, Timothy
    Liu, Zhi-Ping
    Forbess, Joseph
    CIRCULATION, 2017, 136
  • [24] Effects of Hawthorn on Cardiac Remodeling and Left Ventricular Dysfunction after 1 Month of Pressure Overload-induced Cardiac Hypertrophy in Rats
    Hyun Seok Hwang
    Barry E. Bleske
    Michael M. J. Ghannam
    Kimber Converso
    Mark W. Russell
    James C. Hunter
    Marvin O. Boluyt
    Cardiovascular Drugs and Therapy, 2008, 22
  • [25] Effects of hawthorn on cardiac remodeling and left ventricular dysfunction after 1 month of pressure overload-induced cardiac hypertrophy in rats
    Hwang, Hyun Seok
    Bleske, Barry E.
    Ghannam, Michael M. J.
    Converso, Kimber
    Russell, Mark W.
    Hunter, James C.
    Boluyt, Marvin O.
    CARDIOVASCULAR DRUGS AND THERAPY, 2008, 22 (01) : 19 - 28
  • [26] Hydrogen Sulfide Attenuates Cardiac Dysfunction Following Pressure Overload Induced Hypertrophy and Heart Failure Via Augmentation of Angiogenesis
    Kondo, Kazuhisa
    Bhushan, Shashi
    Condit, Marah E.
    King, Adrienne L.
    Predmore, Benjamin L.
    Lefer, David J.
    CIRCULATION, 2011, 124 (21)
  • [27] Growth hormone-releasing hormone attenuates cardiac hypertrophy and improves heart function in pressure overload-induced heart failure
    Gesmundo, Iacopo
    Miragoli, Michele
    Carullo, Pierluigi
    Trovato, Letizia
    Larcher, Veronica
    Di Pasquale, Elisa
    Brancaccio, Mara
    Mazzola, Marta
    Villanova, Tania
    Sorge, Matteo
    Taliano, Marina
    Gallo, Maria Pia
    Alloatti, Giuseppe
    Penna, Claudia
    Hare, Joshua M.
    Ghigo, Ezio
    Schally, Andrew V.
    Condorelli, Gianluigi
    Granata, Riccarda
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (45) : 12033 - 12038
  • [28] A novel fibroblast activation inhibitor attenuates left ventricular remodeling and preserves cardiac function in heart failure
    Bradley, Jessica M.
    Spaletra, Pablo
    Li, Zhen
    Sharp, Thomas E., III
    Goodchild, Traci T.
    Corral, Laura G.
    Fung, Leah
    Chan, Kyle W. H.
    Sullivan, Robert W.
    Swindlehurst, Cathy A.
    Lefer, David T.
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2018, 315 (03): : H563 - H570
  • [29] Zinc finger protein 91 loss induces cardiac hypertrophy through adenosine A1 receptor down-regulation under pressure overload status
    Wu, Xiangqi
    You, Wei
    Wu, Zhiming
    Ye, Fei
    Chen, Shaoliang
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2020, 24 (17) : 10189 - 10201
  • [30] Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure
    Schiattarella, Gabriele G.
    Boccella, Nicola
    Paolillo, Roberta
    Cattaneo, Fabio
    Trimarco, Valentina
    Franzone, Anna
    D'Apice, Stefania
    Giugliano, Giuseppe
    Rinaldi, Laura
    Borzacchiello, Domenica
    Gentile, Alessandra
    Lombardi, Assunta
    Feliciello, Antonio
    Esposito, Giovanni
    Perrino, Cinzia
    FRONTIERS IN PHYSIOLOGY, 2018, 9