Symmetries, Lagrangian formalism and integration of second order ordinary difference equations

被引:3
作者
Dorodnitsyn, V
Kozlov, R
Winternitz, P
机构
[1] Russian Acad Sci, MV Keldysh Appl Math Inst, Moscow 125047, Russia
[2] Univ Oslo, Dept Informat, N-0371 Oslo, Norway
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.2991/jnmp.2003.10.s2.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An integration technique for difference schemes possessing Lie point symmetries is proposed. The method consists of determining an invariant Lagrangian and using a discrete version of Noether's theorem to obtain first integrals. This lowers the order of the invariant difference scheme.
引用
收藏
页码:41 / 56
页数:16
相关论文
共 34 条
[11]  
DORODNITSYN V, 1996, CRM P LECT NOTES, V9, P103
[12]  
DORODNITSYN VA, 1993, MODERN GROUP ANALYSIS: ADVANCED ANALYTICAL AND COMPUTATIONAL METHODS IN MATHEMATICAL PHYSICS, P191
[13]  
DORODNITSYN VA, 1993, DOKL AKAD NAUK+, V328, P678
[14]   FINITE-DIFFERENCE MODELS ENTIRELY INHERITING CONTINUOUS SYMMETRY OF ORIGINAL DIFFERENTIAL-EQUATIONS [J].
DORODNITSYN, VA .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1994, 5 (04) :723-734
[15]  
DORODNITSYN VA, 1994, CRM2187
[16]  
Dorodnitsyn VA, 1991, J Soviet Math, V55, P1490, DOI [10.1007/BF01097535, DOI 10.1007/BF01097535]
[17]   Symmetries of the heat equation on the lattice [J].
Floreanini, R ;
Negro, J ;
Nieto, LM ;
Vinet, L .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (04) :351-355
[18]   LIE SYMMETRIES OF FINITE-DIFFERENCE EQUATIONS [J].
FLOREANINI, R ;
VINET, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (12) :7024-7042
[19]   Symmetries of discrete dynamical systems involving two species [J].
Gómez-Ullate, D ;
Lafortune, S ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (06) :2782-2804
[20]   Lie algebra contractions and symmetries of the Toda hierarchy [J].
Heredero, RH ;
Levi, D ;
Rodríguez, MA ;
Winternitz, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (28) :5025-5040