Symmetries, Lagrangian formalism and integration of second order ordinary difference equations

被引:3
作者
Dorodnitsyn, V
Kozlov, R
Winternitz, P
机构
[1] Russian Acad Sci, MV Keldysh Appl Math Inst, Moscow 125047, Russia
[2] Univ Oslo, Dept Informat, N-0371 Oslo, Norway
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.2991/jnmp.2003.10.s2.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An integration technique for difference schemes possessing Lie point symmetries is proposed. The method consists of determining an invariant Lagrangian and using a discrete version of Noether's theorem to obtain first integrals. This lowers the order of the invariant difference scheme.
引用
收藏
页码:41 / 56
页数:16
相关论文
共 34 条
[1]  
[Anonymous], 1994, CRC HDB LIE GROUP AN
[2]   Symmetry-preserving difference schemes for some heat transfer equations [J].
Bakirova, MI ;
Dorodnitsyn, VA ;
Kozlov, RV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23) :8139-8155
[3]  
Bessel-Hagen E., 1921, MATH ANN, V84, P258
[4]   Symmetry-adapted moving mesh schemes for the nonlinear Schrodinger equation [J].
Budd, C ;
Dorodnitsyn, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10387-10400
[5]   Lie point symmetry preserving discretizations for variable coefficient Korteweg-de Vries equations [J].
Dorodnitsyn, V ;
Winternitz, P .
NONLINEAR DYNAMICS, 2000, 22 (01) :49-59
[6]   Lie group classification of second-order ordinary difference equations [J].
Dorodnitsyn, V ;
Kozlov, R ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (01) :480-504
[7]   Noether-type theorems for difference equations [J].
Dorodnitsyn, V .
APPLIED NUMERICAL MATHEMATICS, 2001, 39 (3-4) :307-321
[8]  
DORODNITSYN V, IN PRESS J MATH PHYS
[9]  
DORODNITSYN V, 2001, GROUP PROPERTIES DIF
[10]  
DORODNITSYN V, 1997, 41997 NTNU NUMERICS