A time-splitting spectral scheme for the Maxwell-Dirac system

被引:70
作者
Huang, ZY [1 ]
Jin, S
Markowich, PA
Sparber, C
Zheng, CX
机构
[1] Tsing Hua Univ, Dept Math Sci, ICMOR, Beijing 100084, Peoples R China
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Vienna, Fak Math, A-1090 Vienna, Austria
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Maxwell-Dirac system; time-splitting spectral method; semi-classical asymptotics; WKB-expansion; non-relativistic limit; Schrodinger-Poisson system;
D O I
10.1016/j.jcp.2005.02.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a time-splitting spectral scheme for the Maxwell-Dirac system and similar time-splitting methods for the corresponding asymptotic problems in the semi-classical and the non-relativistic regimes. The scheme for the Maxwell-Dirac system conserves the Lorentz gauge condition is unconditionally stable and highly efficient as our numerical examples show. In particular, we focus in our examples on the creation of positronic modes in the semi-classical regime and on the electron-positron interaction in the non-relativistic regime. Furthermore, in the non-relativistic regime, our numerical method exhibits uniform convergence in the small parameter delta, which is the ratio of the characteristic speed and the speed of light. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:761 / 789
页数:29
相关论文
共 26 条
[11]  
Chadam JM., 1973, J FUNCT ANAL, V13, P173
[12]   A CLASS OF EXACT PLANE-WAVE SOLUTIONS OF THE MAXWELL-DIRAC EQUATIONS [J].
DAS, A ;
KAY, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2280-2284
[13]  
DONAT P, 1997, J MATH PHYS, V38, P1484
[14]  
Esteban MJ, 2002, DISCRETE CONT DYN S, V8, P381
[15]  
FLATO M, 1997, 127 AMS
[16]  
GROSS L, 1966, COMMUN PUR APPL MATH, V19, P1
[17]   Numerical passage from systems of conservation laws to Hamilton-Jacobi equations, and relaxation schemes [J].
Jin, S ;
Xin, ZP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2385-2404
[18]   Numerical simulation of a generalized Zakharov system [J].
Jin, S ;
Markowich, PA ;
Zheng, CX .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (01) :376-395
[19]  
MASMOUDI M, 2001, MONATSH MATH, V132, P759
[20]   THE NONRELATIVISTIC LIMIT OF THE NONLINEAR DIRAC-EQUATION [J].
NAJMAN, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (01) :3-12