Glut-4 is translocated to both caveolae and non-caveolar lipid rafts, but is partially internalized through caveolae in insulin-stimulated adipocytes

被引:32
作者
Yuan, Taichang
Hong, Shangyu
Yao, Yao
Liao, Kan [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, State Key Lab Mol Biol, Shanghai 200031, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Shanghai 200031, Peoples R China
关键词
Glut-4; translocation; internalization; lipid rafts; caveolae; sucrose density gradient flotation;
D O I
10.1038/cr.2007.73
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Caveolae and non-caveolar lipid rafts are two types of membrane lipid microdomains that play important roles in insulin-stimulated glucose uptake in adipocytes. In order to ascertain their specific functions in this process, caveolae were ablated by caveolin-1 RNA interference. In Cav-1 RNAi adipocytes, neither insulin-stimulated glucose uptake nor Glut-4 (glucose transporter 4) translocation to membrane lipid microdomains was affected by the ablation of caveolae. With a modified sucrose density gradient, caveolae and non-caveolar lipid rafts could be separated. In the wild-type 3T3-L1 adipocytes, Glut-4 was found to be translocated into both caveolae and non-caveolar lipid rafts. However, in Cav-1 RNAi adipocytes, Glut-4 was localized predominantly in non-caveolar lipid rafts. After the removal of insulin, caveolae-localized Glut-4 was internalized faster than non-caveolar lipid raft-associated Glut-4. The internalization of Glut-4 from plasma membrane was significantly decreased in Cav-1 RNAi adipocytes. These results suggest that insulin-stimulated Glut-4 translocation and glucose uptake are caveolae-independent events. Caveolae play a role in the internalization of Glut-4 from plasma membrane after the removal of insulin.
引用
收藏
页码:772 / 782
页数:11
相关论文
共 40 条
[1]   The caveolae membrane system [J].
Anderson, RGW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :199-225
[2]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[3]   Regulated transport of the glucose transporter glut4 [J].
Bryant, NJ ;
Govers, R ;
James, DE .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2002, 3 (04) :267-277
[4]   The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes [J].
Chamberlain, LH ;
Gould, GW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (51) :49750-49754
[5]   Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue [J].
Cohen, AW ;
Razani, B ;
Wang, XB ;
Combs, TP ;
Williams, TM ;
Scherer, PE ;
Lisanti, MP .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2003, 285 (01) :C222-C235
[6]   Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice [J].
Drab, M ;
Verkade, P ;
Elger, M ;
Kasper, M ;
Lohn, M ;
Lauterbach, B ;
Menne, J ;
Lindschau, C ;
Mende, F ;
Luft, FC ;
Schedl, A ;
Haller, H ;
Kurzchalia, TV .
SCIENCE, 2001, 293 (5539) :2449-2452
[7]   Relationship between cholesterol trafficking and signaling in rafts and caveolae [J].
Fielding, CJ ;
Fielding, PE .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2003, 1610 (02) :219-228
[8]  
FROST SC, 1985, J BIOL CHEM, V260, P2646
[9]   Emerging themes in lipid rafts and caveolae [J].
Galbiati, F ;
Razani, B ;
Lisanti, MP .
CELL, 2001, 106 (04) :403-411
[10]   Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells [J].
Gonzalez, E ;
Nagiel, A ;
Lin, AJ ;
Golan, DE ;
Michel, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (39) :40659-40669