Electrochemical in situ construction of vanadium oxide heterostructures with boosted pseudocapacitive charge storage

被引:45
作者
Dong, Ran [1 ]
Song, Yu [1 ]
Yang, Duo [1 ]
Shi, Hua-Yu [1 ]
Qin, Zengming [1 ]
Zhang, Mingyue [1 ]
Guo, Di [1 ]
Sun, Xiaoqi [1 ]
Liu, Xiao-Xia [1 ]
机构
[1] Northeastern Univ, Dept Chem, Shenyang 110819, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
MANGANESE OXIDE; RATE CAPABILITY; PERFORMANCE; SUPERCAPACITORS; CAPACITANCE; ELECTRODES;
D O I
10.1039/c9ta12097a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pseudocapacitive materials hold extraordinary promise for improving the energy densities of electrochemical capacitors but are often limited to electrodes with ultralow mass loadings (e.g. <1 mg cm(-2)) due to the sluggish mass transport kinetics in thicker electrodes. Here a V5O12/VO2 heterojunction nanomaterial with a built-in electric field near the heterointerface is fabricated on a 3D graphite substrate via an in situ electrochemical method for the first time, which can remarkably enhance the capacitive performance by improving the electron/ion delivery kinetics. The V5O12/VO2 electrode (mass loading similar to 10.8 mg cm(-2)) achieves a high areal capacitance of 5.03 F cm(-2) (465 F g(-1)) with a good rate capability and long cycle life, outperforming the V5O12 and VO2 counterparts, as well as the state-of-the-art reported VOX electrodes. An asymmetric supercapacitor assembled using V5O12/VO2 as the negative electrode and MnO2 as the positive electrode can deliver high areal/volumetric energy densities of 1.42 mW h cm(-2)/11.85 mW h cm(-3). An extrapolated gravimetric energy density of 18.6 W h kg(-1) can also be achieved, based on the entire weight of the device (76.6 mg cm(-2), active material ratio similar to 30%), representing a critical step of pushing pseudocapacitors toward practical applications.
引用
收藏
页码:1176 / 1183
页数:8
相关论文
共 46 条
[41]   Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells [J].
Zhao, Chenhuan ;
Li, Yifeng ;
Zhang, Wenqiang ;
Zheng, Yun ;
Lou, Xiaoming ;
Yu, Bo ;
Chen, Jing ;
Chen, Yan ;
Liu, Meilin ;
Wang, Jianchen .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (01) :53-85
[42]   Construction of heterostructure materials toward functionality [J].
Zheng, Haiyan ;
Li, Yongjun ;
Liu, Huibiao ;
Yin, Xiaodong ;
Li, Yuliang .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (09) :4506-4524
[43]   Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium-Ion Batteries [J].
Zheng, Yang ;
Zhou, Tengfei ;
Zhang, Chaofeng ;
Mao, Jianfeng ;
Liu, Huakun ;
Guo, Zaiping .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (10) :3408-3413
[44]   Self-branched α-MnO2/δ-MnO2 heterojunction nanowires with enhanced pseudocapacitance [J].
Zhu, Changrong ;
Yang, Lu ;
Seo, Joon Kyo ;
Zhang, Xiao ;
Wang, Shen ;
Shin, JaeWook ;
Chao, Dongliang ;
Zhang, Hua ;
Meng, Ying Shirley ;
Fan, Hong Jin .
MATERIALS HORIZONS, 2017, 4 (03) :415-422
[45]   Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores [J].
Zhu, Cheng ;
Liu, Tianyu ;
Qian, Fang ;
Han, T. Yong-Jin ;
Duoss, Eric B. ;
Kuntz, Joshua D. ;
Spadaccini, Christopher M. ;
Worsley, Marcus A. ;
Li, Yat .
NANO LETTERS, 2016, 16 (06) :3448-3456
[46]   Vanadium trioxide@carbon nanosheet array-based ultrathin flexible symmetric hydrogel supercapacitors with 2 V voltage and high volumetric energy density [J].
Zhu, Weihua ;
Li, Ruizhi ;
Xu, Pan ;
Li, Yuanyuan ;
Liu, Jinping .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (42) :22216-22223