Predictive Control of a Multivariable Neutralisation Process Using Elman Neural Networks

被引:2
作者
Wysocki, Antoni [1 ]
Lawrynczuk, Maciej [1 ]
机构
[1] Warsaw Univ Technol, Inst Control & Computat Engn, Ul Nowowiejska 15-19, PL-00665 Warsaw, Poland
来源
PROGRESS IN AUTOMATION, ROBOTICS AND MEASURING TECHNIQUES: CONTROL AND AUTOMATION | 2015年 / 350卷
关键词
Process control; Model predictive control; Elman neural networks;
D O I
10.1007/978-3-319-15796-2_34
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents development and simulation results of a computationally efficient predictive control algorithm based on a recurrent Elman neural network. The considered process is a multivariable neutralisation reactor. Process modelling and control issues are thoroughly discussed. In particular, the discussed computationally efficient predictive control algorithm with on-line trajectory linearisation and quadratic optimisation is compared to the truly nonlinear scheme with nonlinear optimisation repeated of each sampling instant on-line.
引用
收藏
页码:335 / 344
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 2001, ADAPT LEARN SYST SIG, DOI 10.1002/047084535X
[2]  
Camacho E.F., 1999, Model Predictive Control
[3]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[4]  
GOMEZ JC, 2004, IEE P CONTROL THEORY, V151
[5]  
Haykin S., 2008, NEURAL NETWORKS COMP
[6]  
Lawrynczuk M., 2014, SSDC, V3
[7]  
LAWRYNCZUK M, 2007, P 11 IFAC IFORS IMAC
[8]  
Li P., 2014, INT J ELECT POWER EN, V55
[9]  
Li Q., 2014, APPL MECH MAT, P505
[10]  
Liou J. - W., 2013, INT J INTELLIGENT IN, V7