Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels

被引:41
作者
Li, Yang [1 ]
Weng, Yiwu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Power Machinery & Engn, Sch Mech Engn, Shanghai 200240, Peoples R China
关键词
Solid oxide fuel cell; Gas turbine; Hybrid system; Ethanol; Hydrogen; Methane; EXERGY ANALYSIS; STEADY-STATE; SOFC; POWER; ETHANOL; MODEL;
D O I
10.1016/j.jpowsour.2011.01.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents an analysis of the fuel flexibility of a methane-based solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The simulation models of the system are mathematically defined. Special attention is paid to the development of an SOFC thermodynamic model that allows for the calculation of radial temperature gradients. Based on the simulation model, the new design point of system for new fuels is defined first; the steady-state performance of the system fed by different fuels is then discussed. When the hybrid system operates with hydrogen, the net power output at the new design point will decrease to 70% of the methane, while the design net efficiency will decrease to 55%. Similar to hydrogen, the net output power of the ethanol-fueled system will decrease to 88% of the methane value due to the lower cooling effect of steam reforming. However, the net efficiency can remain at 61% at high level due to increased heat recuperation from exhaust gas. To increase the power output of the hybrid system operating with non-design fuels without changing the system configuration, three different measures are introduced and investigated in this paper. The introduced measures can increase the system net power output operating with hydrogen to 94% of the original value at the cost of a lower efficiency of 45%. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3824 / 3835
页数:12
相关论文
共 23 条
[1]  
ABAYOMI A, 2006, INT J HYDROGEN ENERG, V31, P1707
[2]   3-DIMENSIONAL AND TIME-DEPENDENT SIMULATION OF A PLANAR SOLID OXIDE FUEL-CELL STACK [J].
ACHENBACH, E .
JOURNAL OF POWER SOURCES, 1994, 49 (1-3) :333-348
[3]   Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance [J].
Aguiar, P ;
Adjiman, CS ;
Brandon, NP .
JOURNAL OF POWER SOURCES, 2004, 138 (1-2) :120-136
[4]  
[Anonymous], 2004, FUEL CELL HDB, VSeventh
[5]   Design and partial load exergy analysis of hybrid SOFC-GT power plant [J].
Calise, F. ;
Palombo, A. ;
Vanoli, L. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :225-244
[6]   Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry [J].
Campanari, S ;
Iora, P .
JOURNAL OF POWER SOURCES, 2004, 132 (1-2) :113-126
[7]   Energy and exergy analysis of simple solid-oxide fuel-cell power systems [J].
Chan, SH ;
Low, CF ;
Ding, OL .
JOURNAL OF POWER SOURCES, 2002, 103 (02) :188-200
[8]   Performance evaluation of different configurations of biogas-fuelled SOFC micro-CHP systems for residential applications [J].
Farhad, Siamak ;
Hamdullahpur, Feridun ;
Yoo, Yeong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (08) :3758-3768
[9]  
Hoogers, 2003, FUEL CELL TECHNOLOGY, DOI 10.1201/9781420041552
[10]   Characteristics and performance of lanthanum gallate electrolyte-supported SOFC under ethanol steam and hydrogen [J].
Huang, Bo ;
Zu, Xin-Jian ;
Hu, Wan-Qi ;
Yu, Qing-Chun ;
Tu, Heng-Yong .
JOURNAL OF POWER SOURCES, 2009, 186 (01) :29-36