Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox

被引:591
作者
Becker, Scott A. [1 ]
Feist, Adam M. [1 ]
Mo, Monica L. [1 ]
Hannum, Gregory [1 ]
Palsson, Bernhard O. [1 ]
Herrgard, Markus J. [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
关键词
D O I
10.1038/nprot.2007.99
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The manner in which microorganisms utilize their metabolic processes can be predicted using constraint-based analysis of genome-scale metabolic networks. Herein, we present the constraint-based reconstruction and analysis toolbox, a software package running in the Matlab environment, which allows for quantitative prediction of cellular behavior using a constraint-based approach. Specifically, this software allows predictive computations of both steady-state and dynamic optimal growth behavior, the effects of gene deletions, comprehensive robustness analyses, sampling the range of possible cellular metabolic states and the determination of network modules. Functions enabling these calculations are included in the toolbox, allowing a user to input a genome-scale metabolic model distributed in Systems Biology Markup Language format and perform these calculations with just a few lines of code. The results are predictions of cellular behavior that have been verified as accurate in a growing body of research. After software installation, calculation time is minimal, allowing the user to focus on the interpretation of the computational results.
引用
收藏
页码:727 / 738
页数:12
相关论文
共 27 条
  • [1] Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
    Alper, H
    Jin, YS
    Moxley, JF
    Stephanopoulos, G
    [J]. METABOLIC ENGINEERING, 2005, 7 (03) : 155 - 164
  • [2] BORK P, 2005, MOL SYST BIOL 2505
  • [3] Transcriptional regulation and metabolism
    Brynildsen, MP
    Wong, WW
    Liao, JC
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 : 1423 - 1426
  • [4] Integrating high-throughput and computational data elucidates bacterial networks
    Covert, MW
    Knight, EM
    Reed, JL
    Herrgard, MJ
    Palsson, BO
    [J]. NATURE, 2004, 429 (6987) : 92 - 96
  • [5] Reconstruction of the central carbon metabolism of Aspergillus niger
    David, H
    Åkesson, M
    Nielsen, J
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (21): : 4243 - 4253
  • [6] Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
    Duarte, NC
    Herrgård, MJ
    Palsson, BO
    [J]. GENOME RESEARCH, 2004, 14 (07) : 1298 - 1309
  • [7] In silico design and adaptive evolution of Escherichia coli for production of lactic acid
    Fong, SS
    Burgard, AP
    Herring, CD
    Knight, EM
    Blattner, FR
    Maranas, CD
    Palsson, BO
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2005, 91 (05) : 643 - 648
  • [8] Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes
    Fong, SS
    Palsson, BO
    [J]. NATURE GENETICS, 2004, 36 (10) : 1056 - 1058
  • [9] The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens
    Hong, SH
    Kim, JS
    Lee, SY
    In, YH
    Choi, SS
    Rih, JK
    Kim, CH
    Jeong, H
    Hur, CG
    Kim, JJ
    [J]. NATURE BIOTECHNOLOGY, 2004, 22 (10) : 1275 - 1281
  • [10] The systems biology markup language (SBML):: a medium for representation and exchange of biochemical network models
    Hucka, M
    Finney, A
    Sauro, HM
    Bolouri, H
    Doyle, JC
    Kitano, H
    Arkin, AP
    Bornstein, BJ
    Bray, D
    Cornish-Bowden, A
    Cuellar, AA
    Dronov, S
    Gilles, ED
    Ginkel, M
    Gor, V
    Goryanin, II
    Hedley, WJ
    Hodgman, TC
    Hofmeyr, JH
    Hunter, PJ
    Juty, NS
    Kasberger, JL
    Kremling, A
    Kummer, U
    Le Novère, N
    Loew, LM
    Lucio, D
    Mendes, P
    Minch, E
    Mjolsness, ED
    Nakayama, Y
    Nelson, MR
    Nielsen, PF
    Sakurada, T
    Schaff, JC
    Shapiro, BE
    Shimizu, TS
    Spence, HD
    Stelling, J
    Takahashi, K
    Tomita, M
    Wagner, J
    Wang, J
    [J]. BIOINFORMATICS, 2003, 19 (04) : 524 - 531