WELL-POSEDNESS OF THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE FOURTH-ORDER NONLINEAR SCHRO spacing diaeresis DINGER EQUATION

被引:0
作者
Guo, Boling [1 ]
Wu, Jun [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 07期
关键词
Fourth-order nonlinear Schrodinger equations; initial-boundary value problem; local well-posedness; nonlinear smoothing; DE-VRIES EQUATION; SCHRODINGER-TYPE EQUATIONS; CAUCHY-PROBLEM; SCATTERING; REGULARITY; SOLITONS;
D O I
10.3934/dcdsb.2021205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to study local regularity properties of the fourth-order nonlinear Schro center dot dinger equations on the half line. We prove the local existence, uniqueness, and continuous dependence on initial data in low regularity Sobolev spaces. We also obtain the nonlinear smoothing property: the nonlinear part of the solution on the half line is smoother than the initial data.
引用
收藏
页码:3749 / 3778
页数:30
相关论文
共 30 条