Associated varieties for real reductive groups

被引:0
作者
Adams, Jeffrey [1 ]
Vogan, David A., Jr. [2 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Reductive group; representation; orbit method; REPRESENTATIONS; ORBITS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an algorithm to compute the associated variety of a Harish-Chandra module for a real reductive group G(R). The algorithm is implemented in the atlas software package.
引用
收藏
页码:1191 / 1267
页数:77
相关论文
共 29 条
[1]  
Achar PN, 2015, PROG MATH, V312, P11, DOI 10.1007/978-3-319-23443-4_2
[2]   UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS [J].
Adams, Jeffrey D. ;
van Leeuwen, Marc A. A. ;
Trapa, Peter E. ;
Vogan, David A., Jr. .
ASTERISQUE, 2020, (417) :V-+
[3]  
[Anonymous], 1977, CONTRIBUTIONS ALGEBR, P175
[4]  
[Anonymous], 2019, ATLAS LIE GROUPS REP
[5]  
[Anonymous], 2004, REPRESENT THEOR
[6]  
[Anonymous], 2003, Represent. Theory
[7]   THE LOCAL-STRUCTURE OF CHARACTERS [J].
BARBASCH, D ;
VOGAN, DA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1980, 37 (01) :27-55
[8]   Closure ordering and the Kostant-Sekiguchi correspondence [J].
Barbasch, D ;
Sepanski, MR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (01) :311-317
[9]  
Chriss Neil, 1997, Representation theory and complex geometry. Modern Birkhauser Classics
[10]  
Collingwood D., 1993, Mathematics series