Associated varieties for real reductive groups

被引:0
作者
Adams, Jeffrey [1 ]
Vogan, David A., Jr. [2 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Reductive group; representation; orbit method; REPRESENTATIONS; ORBITS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an algorithm to compute the associated variety of a Harish-Chandra module for a real reductive group G(R). The algorithm is implemented in the atlas software package.
引用
收藏
页码:1191 / 1267
页数:77
相关论文
共 29 条
  • [1] Achar P. N., 2004, REPRESENT THEOR, V8, P180
  • [2] Achar PN, 2015, PROG MATH, V312, P11, DOI 10.1007/978-3-319-23443-4_2
  • [3] UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS
    Adams, Jeffrey D.
    van Leeuwen, Marc A. A.
    Trapa, Peter E.
    Vogan, David A., Jr.
    [J]. ASTERISQUE, 2020, (417) : V - +
  • [4] [Anonymous], 1993, Mathematics series
  • [5] [Anonymous], 1992, PURE APPL MATH
  • [6] [Anonymous], 1977, Contributions to algebra (collection of papers dedicated to Ellis Kolchin), P175
  • [7] [Anonymous], 2019, ATLAS LIE GROUPS REP
  • [8] THE LOCAL-STRUCTURE OF CHARACTERS
    BARBASCH, D
    VOGAN, DA
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1980, 37 (01) : 27 - 55
  • [9] Closure ordering and the Kostant-Sekiguchi correspondence
    Barbasch, D
    Sepanski, MR
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (01) : 311 - 317
  • [10] Bezrukavnikov R., 2003, REPRESENT THEOR, V7, P1, DOI DOI 10.1090/S1088-4165-03-00158-4