On Approximation of Multivalued Solution for Hamilton-Jacobi equation

被引:0
作者
Kolpakova, Ekaterina A. [1 ]
机构
[1] Ural Fed Univ, Krasovskii Inst Math & Mech UrB RAS, Ekaterinburg, Russia
关键词
Hamilton-Jacobi equation; multivalued solution; minimax/viscosity solution; convergence in L-1; viability set; VISCOSITY SOLUTIONS;
D O I
10.1016/j.ifacol.2018.11.447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper deals with the Cauchy problem for Hamilton Jacobi equation with discontinuous w.r.t. state variable Hamiltonian. In this case we use the notion of M-solution proposed by Subbotin. We consider the sequence of auxiliary Cauchy problems for Hamilton Jacobi equations with Lipschitz continuous w.r.t. phase variable Hamiltonians. We show that the sequence of distances between of graphs of solutions for auxiliary Cauchy problems and graph of M-solution tends to zero in metrics L-1. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:805 / 809
页数:5
相关论文
共 14 条
[1]   APPROXIMATE SOLUTIONS OF CONTINUOUS-TIME STOCHASTIC GAMES [J].
Averboukh, Yurii .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (05) :2629-2649
[2]  
BARLES G, 1987, ESAIM-MATH MODEL NUM, V21, P557
[3]  
Cardaliaguet P., 1999, Stochastic and Differential Games: Theory and Numerical Methods. Ed. by, P177
[4]   Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients [J].
Coclite, Giuseppe Maria ;
Risebro, Nils Henrik .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2007, 4 (04) :771-795
[5]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[6]   DISCRETE-TIME HIGH-ORDER SCHEMES FOR VISCOSITY SOLUTIONS OF HAMILTON-JACOBI-BELLMAN EQUATIONS [J].
FALCONE, M ;
FERRETTI, R .
NUMERISCHE MATHEMATIK, 1994, 67 (03) :315-344
[7]  
Ishii Hitoshi, 1985, B FS ENG CHUO U, V28, P33
[8]  
[Колпакова Екатерина Алексеевна Kolpakova Ekaterina A.], 2017, [Математическая теория игр и ее приложения, Matematicheskaya teoriya igr i ee prilozheniya], V9, P39
[9]   An Approach-Evasion Differential Game: Stochastic Guide [J].
Krasovskii, N. N. ;
Kotel'nikova, A. N. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 269 :S191-S213
[10]   Zero-Sum Pursuit-Evasion Differential Games with Many Objects: Survey of Publications [J].
Kumkov, Sergey S. ;
Le Menec, Stephane ;
Patsko, Valerii S. .
DYNAMIC GAMES AND APPLICATIONS, 2017, 7 (04) :609-633