Robust statistical inference for longitudinal data with nonignorable dropouts

被引:1
作者
Shao, Yujing [1 ]
Ma, Wei [1 ]
Wang, Lei [1 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci & LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Dropout propensity; empirical likelihood; missing not at random; nonresponse instrument; quadratic inference function; variable selection; GENERALIZED LINEAR-MODELS; CHOLESKY FACTOR MODEL; EMPIRICAL LIKELIHOOD; QUANTILE REGRESSION; VARIABLE SELECTION; ESTIMATING EQUATIONS;
D O I
10.1080/02331888.2022.2110250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose robust statistical inference and variable selection method for generalized linear models that accommodate the outliers, nonignorable dropouts and within-subject correlations. The purpose of our study is threefold. First, we construct the robust and bias-corrected generalized estimating equations (GEEs) by combining the Mallows-type weights, Huber's score function and inverse probability weighting approaches to against the influence of outliers and account for nonignorable dropouts. Subsequently, the generalized method of moments is utilized to estimate the parameters in the nonignorable dropout propensity based on sufficient instrumental estimating equations. Second, in order to incorporate the within-subject correlations under an informative working correlation structure, we borrow the idea of quadratic inference function and hybrid-GEE to obtain the improved empirical likelihood procedures. The asymptotic properties of the proposed estimators and their confidence regions are derived. Third, the robust variable selection and algorithm are investigated. We evaluate the performance of proposed estimators through simulation and illustrate our method in an application to HIV-CD4 data.
引用
收藏
页码:1072 / 1094
页数:23
相关论文
共 51 条
  • [1] Weighted empirical likelihood for generalized linear models with longitudinal data
    Bai, Yang
    Fung, Wing Kam
    Zhu, Zhongyi
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3446 - 3456
  • [2] RANK-BASED ESTIMATING EQUATION WITH NON-IGNORABLE MISSING RESPONSES VIA EMPIRICAL LIKELIHOOD
    Bindele, Huybrechts F.
    Zhao, Yichuan
    [J]. STATISTICA SINICA, 2018, 28 (04) : 1787 - 1820
  • [3] Variable selection for marginal longitudinal generalized linear models
    Cantoni, E
    Flemming, JM
    Ronchetti, E
    [J]. BIOMETRICS, 2005, 61 (02) : 507 - 514
  • [4] Extended Bayesian information criteria for model selection with large model spaces
    Chen, Jiahua
    Chen, Zehua
    [J]. BIOMETRIKA, 2008, 95 (03) : 759 - 771
  • [5] DIGGLE P, 1994, J ROY STAT SOC C, V43, P49
  • [6] Variable selection via nonconcave penalized likelihood and its oracle properties
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1348 - 1360
  • [7] Variable selection in robust regression models for longitudinal data
    Fan, Yali
    Qin, Guoyou
    Zhu, Zhongyi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 109 : 156 - 167
  • [8] FITZMAURICE GM, 1995, J ROY STAT SOC B MET, V57, P691
  • [9] Quantile regression for longitudinal data with a working correlation model
    Fu, Liya
    Wang, You-Gan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (08) : 2526 - 2538
  • [10] LARGE SAMPLE PROPERTIES OF GENERALIZED-METHOD OF MOMENTS ESTIMATORS
    HANSEN, LP
    [J]. ECONOMETRICA, 1982, 50 (04) : 1029 - 1054