Z2-bordism and the Borsuk-Ulam Theorem

被引:0
作者
Crabb, M. C. [1 ]
Goncalves, D. L. [2 ]
Libardi, A. K. M. [3 ]
Pergher, P. L. Q. [4 ]
机构
[1] Univ Aberdeen, Dept Math, Aberdeen AB24 3UE, Scotland
[2] Univ Sao Paulo, Dept Matemat, IME, Caixa Postal 66281, BR-05314970 Sao Paulo, SP, Brazil
[3] IGCE UNESP, Dept Matemat, BR-13506900 Rio Claro, SP, Brazil
[4] Univ Fed Sao Carlos, Dept Matemat, Caixa Postal 676, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
55M35; 57R75; Primary; 55M20; Secondary; 57R85;
D O I
10.1007/s00229-015-0809-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this work is to classify, for given integers , the bordism class of a closed smooth -manifold with a free smooth involution with respect to the validity of the Borsuk-Ulam property that for every continuous map there exists a point such that . We will classify a given free -bordism class according to the three possible cases that (a) all representatives of satisfy the Borsuk-Ulam property; (b) there are representatives and of such that satisfies the Borsuk-Ulam property but does not; (c) no representative of satisfies the Borsuk-Ulam property.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 6 条
[1]  
Borsuk Karol, 1933, Fundamenta Mathematicae, V20, P177, DOI DOI 10.4064/FM-20-1-177-190
[2]  
Brocker Th, 1970, SPRINGER LECT NOTES, V178
[3]  
CONNER PE, 1964, DIFFERENTIABLE PERIO
[4]  
Goncalves Diana, 2010, Proceedings of the Second International Conference on Advances in Databases, Knowledge, and Data Applications (DBKDA 2010), P1, DOI 10.1109/DBKDA.2010.12
[5]  
Koschorke U, 1981, Lecture Notes in Mathematics, V847
[6]   BORSUK-ULAM TYPE THEOREMS FOR MANIFOLDS [J].
Musin, Oleg R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (07) :2551-2560