Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage

被引:172
作者
Cheng, Sang [1 ]
Zhou, Yao [1 ]
Li, Yushu [1 ]
Yuan, Chao [1 ]
Yang, Mingcong [1 ]
Fu, Jing [1 ]
Hu, Jun [1 ]
He, Jinliang [1 ]
Li, Qi [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Capacitors; Polymer dielectrics; High temperature; Electrical energy storage; Deposition layers; DENSITY; POLYPROPYLENE; NANOCOMPOSITES; CONDUCTION; EFFICIENCY; FILMS;
D O I
10.1016/j.ensm.2021.07.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer film capacitors are usually limited to relatively low working temperatures due to the large conduction loss of polymer dielectrics under high thermal stress. Here, a polymer dielectric sandwiched by medium-dielectric-constant nanoscale deposition layers is reported, which exhibits significantly suppressed conduction loss and outstanding capacitive performance at high temperatures. A series of deposition materials with distinct band structures and dielectric properties are investigated. It is found that well-balanced bandgap, dielectric constant and electrical conductivity of the nanoscale deposition layer is desirable for suppressing charge injection. The substantial performance improvements are demonstrated to result from the slow decay of barrier height with increasing electric field and the reduced electric field in the deposition layers. The optimized design using a polyetherimide film sandwiched by 150-nm-thick Al2O3 deposition layers gives rise to a concurrent high discharged energy density (2.8 J cm(-3)) and charge-discharge efficiency (90%) up to 200 degrees C, which are significantly higher than those of previously reported surface-coated polymer dielectrics, and are even comparable to the maximum values achieved with expensive, less productive solution-based composite approaches. Moreover, the nanoscale coating layer can be fabricated through evaporation deposition techniques, which is accessible with industrial equipment for fast surface deposition of capacitor films
引用
收藏
页码:445 / 453
页数:9
相关论文
共 49 条
[1]   Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage [J].
Ai, Ding ;
Li, He ;
Zhou, Yao ;
Ren, Lulu ;
Han, Zhubing ;
Yao, Bin ;
Zhou, Wei ;
Zhao, Ling ;
Xu, Jianmei ;
Wang, Qing .
ADVANCED ENERGY MATERIALS, 2020, 10 (16)
[2]   High-Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials [J].
Azizi, Amin ;
Gadinski, Matthew R. ;
Li, Qi ;
Abu AlSaud, Mohammed ;
Wang, Jianjun ;
Wang, Yi ;
Wang, Bo ;
Liu, Feihua ;
Chen, Long-Qing ;
Alem, Nasim ;
Wang, Qing .
ADVANCED MATERIALS, 2017, 29 (35)
[3]   PHOTOEMISSION-STUDY OF SIOX (0 LESS-THAN-OR-EQUAL-TO X LESS-THAN-OR-EQUAL-TO 2) ALLOYS [J].
BELL, FG ;
LEY, L .
PHYSICAL REVIEW B, 1988, 37 (14) :8383-8393
[4]   State of the art of high temperature power electronics [J].
Buttay, Cyril ;
Planson, Dominique ;
Allard, Bruno ;
Bergogne, Dominique ;
Bevilacqua, Pascal ;
Joubert, Charles ;
Lazar, Mihai ;
Martin, Christian ;
Morel, Herve ;
Tournier, Dominique ;
Raynaud, Christophe .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2011, 176 (04) :283-288
[5]   Polyimide films coated by magnetron sputtered boron nitride for high-temperature capacitor dielectrics [J].
Cheng, Sang ;
Zhou, Yao ;
Hu, Jun ;
He, Jinliang ;
Li, Qi .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2020, 27 (02) :498-503
[6]   Thin Film Applications in Advanced Electron Devices [J].
Chiu, Fu-Chien ;
Pan, Tung-Ming ;
Kundu, Tapas Kumar ;
Shih, Chun-Hsing .
ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2014, 2014
[7]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[8]   Effect of molecular weight on the dielectric breakdown strength of ferroelectric poly(vinylidene fluoride-chlorotrifluoroethylene)s [J].
Claude, Jason ;
Lu, Yingying ;
Wanga, Qing .
APPLIED PHYSICS LETTERS, 2007, 91 (21)
[9]   Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles [J].
Fan, Mingzhi ;
Hu, Penghao ;
Dan, Zhenkang ;
Jiang, Jianyong ;
Sun, Binzhou ;
Shen, Yang .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (46) :24536-24542
[10]   TUNNELING FROM AN INDEPENDENT-PARTICLE POINT OF VIEW [J].
HARRISON, WA .
PHYSICAL REVIEW, 1961, 123 (01) :85-&