Manganese acquisition is facilitated by PilA in the cyanobacterium Synechocystis sp PCC 6803

被引:7
|
作者
Lamb, Jacob J. [1 ,2 ,3 ,4 ]
Hohmann-Marriott, Martin F. [1 ,2 ]
机构
[1] NTNU, Dept Biotechnol, Trondheim, Norway
[2] NTNU, PhotoSynLab, Trondheim, Norway
[3] NTNU, Dept Elect Syst, Trondheim, Norway
[4] NTNU, ENERSENSE, Trondheim, Norway
来源
PLOS ONE | 2017年 / 12卷 / 10期
关键词
SP STRAIN PCC-6803; EQUATORIAL PACIFIC-OCEAN; IRON TRANSPORT; NANOWIRES; MOTILITY; BINDING; MICROORGANISMS; TRANSFORMATION; ACCUMULATION; CHLOROPHYLL;
D O I
10.1371/journal.pone.0184685
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Manganese is an essential element required by cyanobacteria, as it is an essential part of the oxygen-evolving center of photosystem II. In the presence of atmospheric oxygen, manganese is present as manganese oxides, which have low solubility and consequently provide low bioavailability. It is unknown if cyanobacteria are able to utilize these manganese sources, and what mechanisms may be employed to do so. Recent evidence suggests that type IV pili in non-photosynthetic bacteria facilitate electron donation to extracellular electron acceptors, thereby enabling metal acquisition. Our present study investigates whether PilA1 (major pilin protein of type IV pili) enables the cyanobacterium Synechocystis PCC 6808 to access to Mn from manganese oxides. We present physiological and spectroscopic data, which indicate that the presence of PilA1 enhances the ability of cyanobacteria to grow on manganese oxides. These observations suggest a role of PilA1-containing pili in cyanobacterial manganese acquisition.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Phototaxis in the cyanobacterium Synechocystis sp PCC 6803:: Role of different photoreceptors
    Fiedler, B
    Börner, T
    Wilde, A
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2005, 81 (06) : 1481 - 1488
  • [22] Effect of gravity changes on the cyanobacterium Synechocystis sp. PCC 6803
    Erdmann, N
    Effmert, U
    Fulda, S
    Oheim, S
    CURRENT MICROBIOLOGY, 1997, 35 (06) : 348 - 355
  • [23] FERREDOXIN AND FLAVODOXIN FROM THE CYANOBACTERIUM SYNECHOCYSTIS SP PCC-6803
    BOTTIN, H
    LAGOUTTE, B
    BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1101 (01) : 48 - 56
  • [24] Astaxanthin production in a model cyanobacterium Synechocystis sp. PCC 6803
    Shimada, Naoya
    Okuda, Yukiko
    Maeda, Kaisei
    Umeno, Daisuke
    Takaichi, Shinichi
    Ikeuchi, Masahiko
    JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 2020, 66 (02): : 116 - 120
  • [25] Insights into isoprene production using the cyanobacterium Synechocystis sp PCC 6803
    Pade, Nadin
    Erdmann, Sabrina
    Enke, Heike
    Dethloff, Frederik
    Duehring, Ulf
    Georg, Jens
    Wambutt, Juliane
    Kopka, Joachim
    Hess, Wolfgang R.
    Zimmermann, Ralf
    Kramer, Dan
    Hagemann, Martin
    BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
  • [26] Characterization of Spermidine Transport System in a Cyanobacterium, Synechocystis sp PCC 6803
    Raksajit, Wuttinun
    Yodsang, Panutda
    Maenpaa, Pirkko
    Incharoensakdi, Aran
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 19 (05) : 447 - 454
  • [27] Glutaredoxins are essential for stress adaptation in the cyanobacterium Synechocystis sp PCC 6803
    Sanchez-Riego, Ana M.
    Lopez-Maury, Luis
    Florencio, Francisco J.
    FRONTIERS IN PLANT SCIENCE, 2013, 4
  • [28] Structural feature of the genome of the cyanobacterium, Synechocystis sp PCC6803
    Tabata, S
    PHOTOSYNTHESIS: MECHANISMS AND EFFECTS, VOLS I-V, 1998, : 2827 - 2833
  • [29] Functional Diversity of Transcriptional Regulators in the Cyanobacterium Synechocystis sp PCC 6803
    Shi, Mengliang
    Zhang, Xiaoqing
    Pei, Guangsheng
    Chen, Lei
    Zhang, Weiwen
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [30] The three-dimensional structure of the cyanobacterium Synechocystis sp PCC 6803
    van de Meene, AML
    Hohmann-Marriott, MF
    Vermaas, WFJ
    Roberson, RW
    ARCHIVES OF MICROBIOLOGY, 2006, 184 (05) : 259 - 270