Matrix-Assisted Energy Conversion in Nanostructured Piezoelectric Arrays

被引:37
作者
Wang, Xianying [1 ,2 ]
Kim, Kanguk [3 ]
Wang, Yinmin [1 ]
Stadermann, Michael [1 ]
Noy, Aleksandr [1 ,4 ]
Hamza, Alex V. [1 ]
Yang, Junhe [2 ]
Sirbuly, Donald J. [1 ,3 ]
机构
[1] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
[2] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, Shanghai 200093, Peoples R China
[3] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[4] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA
关键词
Energy conversion; piezoelectric; ZnO Si; hybrid nanogenerator; Seebeck effect; ZINC-OXIDE NANOWIRES; SILICON NANOWIRES; NANOGENERATOR; ZNO; PERFORMANCE; GROWTH;
D O I
10.1021/nl102863c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate an organic/inorganic hybrid energy harvesting platform based on nanostructured piezolelectric arrays embedded in an environmental responsive polymer matrix which can self generate electrical power by scavenging energy from the environment A proof of principle device is designed fabricated and tested using vertically aligned ZnO nanowires and heat as the local energy source The device layout takes advantage of the collective stretching motion of piezoelectric ZnO NWs induced by the shape change of the matrix polymer to convert the thermal energy into direct current with output power densities of 20 nW/cm(2) at a heating temperature of 65 degrees C The responsive nature of polymeric matrices to various stimuli makes this nanostructured piezoelectric architecture a highly versatile approach to scavenging energy from a multitude of environments including fluid based and chemical rich systems
引用
收藏
页码:4901 / 4907
页数:7
相关论文
共 35 条
[1]   ATOMIC DISPLACEMENT, ANHARMONIC THERMAL VIBRATION, EXPANSIVITY AND PYROELECTRIC COEFFICIENT THERMAL DEPENDENCES IN ZNO [J].
ALBERTSSON, J ;
ABRAHAMS, SC ;
KVICK, A .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1989, 45 :34-40
[2]   Structure and surface termination of ZnO films grown on (0001)- and (11(2)over-bar-0)-oriented Al2O3 [J].
Ay, M. ;
Nefedov, A. ;
Girol, S. Gil ;
Woell, Ch. ;
Zabel, H. .
THIN SOLID FILMS, 2006, 510 (1-2) :346-350
[3]   Logic circuits with carbon nanotube transistors [J].
Bachtold, A ;
Hadley, P ;
Nakanishi, T ;
Dekker, C .
SCIENCE, 2001, 294 (5545) :1317-1320
[4]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[5]   Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency [J].
Chang, Chieh ;
Tran, Van H. ;
Wang, Junbo ;
Fuh, Yiin-Kuen ;
Lin, Liwei .
NANO LETTERS, 2010, 10 (02) :726-731
[6]   Selective gas detection using a carbon nanotube sensor [J].
Chopra, S ;
McGuire, K ;
Gothard, N ;
Rao, AM ;
Pham, A .
APPLIED PHYSICS LETTERS, 2003, 83 (11) :2280-2282
[7]   Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics [J].
Gao, Yifan ;
Wang, Zhong Lin .
NANO LETTERS, 2007, 7 (08) :2499-2505
[8]   Solution-grown zinc oxide nanowires [J].
Greene, Lori E. ;
Yuhas, Benjamin D. ;
Law, Matt ;
Zitoun, David ;
Yang, Peidong .
INORGANIC CHEMISTRY, 2006, 45 (19) :7535-7543
[9]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[10]  
Huang MH, 2001, ADV MATER, V13, P113, DOI 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO