Bulk dissipation in the quantum anomalous Hall effect

被引:19
作者
Rodenbach, L. K. [1 ,2 ]
Rosen, I. T. [2 ,3 ]
Fox, E. J. [1 ,2 ]
Zhang, Peng [4 ]
Pan, Lei [4 ]
Wang, Kang L. [4 ]
Kastner, M. A. [1 ,2 ,5 ]
Goldhaber-Gordon, D. [1 ,2 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[3] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[4] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[5] MIT, Dept Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
DIRAC-FERMION; BREAKDOWN; STATE; DISORDER; SURFACE;
D O I
10.1063/5.0056796
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Even at the lowest accessible temperatures, measurements of the quantum anomalous Hall (QAH) effect have indicated the presence of parasitic dissipative conduction channels. There is no consensus whether parasitic conduction is related to processes in the bulk or along the edges. Here, we approach this problem by comparing transport measurements of Hall bar and Corbino geometry devices fabricated from Cr-doped (BiSb)(2)Te-3. We identify bulk conduction as the dominant source of dissipation at all values of temperature and in-plane electric field. Furthermore, we observe identical breakdown phenomenology in both geometries, indicating that breakdown of the QAH phase is a bulk process. The methodology developed in this study could be used to identify dissipative conduction mechanisms in new QAH materials, ultimately guiding material development toward realization of the QAH effect at higher temperatures.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Aging and reduced bulk conductance in thin films of the topological insulator Bi2Se3 [J].
Aguilar, R. Valdes ;
Wu, L. ;
Stier, A. V. ;
Bilbro, L. S. ;
Brahlek, M. ;
Bansal, N. ;
Oh, S. ;
Armitage, N. P. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (15)
[2]   Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field [J].
Bestwick, A. J. ;
Fox, E. J. ;
Kou, Xufeng ;
Pan, Lei ;
Wang, Kang L. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (18)
[3]   Critical current density for the dissipationless quantum Hall effect [J].
Bliek, L ;
Braun, E ;
Hein, G ;
Kose, V ;
Niemeyer, J ;
Weimann, G ;
Schlapp, W .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1986, 1 (02) :110-112
[4]   Zener tunneling between Landau orbits in two-dimensional electron Corbino rings [J].
Bykov, A. A. ;
Dmitriev, D. V. ;
Marchishin, I. V. ;
Byrnes, S. ;
Vitkalov, S. A. .
APPLIED PHYSICS LETTERS, 2012, 100 (25)
[5]   Observation of the Quantum Anomalous Hall Insulator to Anderson Insulator Quantum Phase Transition and its Scaling Behavior [J].
Chang, Cui-Zu ;
Zhao, Weiwei ;
Li, Jian ;
Jain, J. K. ;
Liu, Chaoxing ;
Moodera, Jagadeesh S. ;
Chan, Moses H. W. .
PHYSICAL REVIEW LETTERS, 2016, 117 (12)
[6]   Zero-Field Dissipationless Chiral Edge Transport and the Nature of Dissipation in the Quantum Anomalous Hall State [J].
Chang, Cui-Zu ;
Zhao, Weiwei ;
Kim, Duk Y. ;
Wei, Peng ;
Jain, J. K. ;
Liu, Chaoxing ;
Chan, Moses H. W. ;
Moodera, Jagadeesh S. .
PHYSICAL REVIEW LETTERS, 2015, 115 (05)
[7]  
Chang CZ, 2015, NAT MATER, V14, P473, DOI [10.1038/nmat4204, 10.1038/NMAT4204]
[8]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[9]  
Checkelsky JG, 2014, NAT PHYS, V10, P731, DOI [10.1038/nphys3053, 10.1038/NPHYS3053]
[10]  
Checkelsky JG, 2012, NAT PHYS, V8, P729, DOI [10.1038/NPHYS2388, 10.1038/nphys2388]