Berry-Esseen bound and precise moderate deviations for products of random matrices

被引:8
|
作者
Xiao, Hui [1 ]
Grama, Ion [2 ]
Liu, Quansheng [2 ]
机构
[1] Univ Hildesheim, Inst Math & Angew Informat, Hildesheim, Germany
[2] Univ Bretagne Sud, LMBA UMR CNRS 6205, Vannes, France
基金
中国国家自然科学基金;
关键词
Products of random matrices; Berry-Esseen bound; Edgeworth expansion; Cramer-type moderate deviations; moderate deviation principle; spectral gap; SPECTRAL GAP PROPERTIES; CENTRAL-LIMIT-THEOREM; STATIONARY MEASURES; RANDOM-WALKS; PROBABILITIES; ASYMPTOTICS; LAW;
D O I
10.4171/JEMS/1142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (g(n))(n >= 1) (g be a sequence of independent and identically distributed (i.i.d.) d x d real .0 random matrices. For n >= 1 set G(n) = g(n) center dot center dot center dot g(1). Given any starting point x = Rv is an element of Pd-1, con- sider the Markov chain X-n(x) = RG(n)(v) on the projective space Pd-1 and define the norm cocycle by sigma(G(n), x) = log (vertical bar G(n)(v)vertical bar/vertical bar v vertical bar), for an arbitrary norm vertical bar center dot vertical bar on R-d. Under suitable conditions we prove a Berry-Esseen-type theorem and an Edgeworth expansion for the couple (X-n(x), sigma(G(n), x)). These results are established using a brand new smoothing inequality on complex plane, the saddle point method and additional spectral gap properties of the transfer operator related to the Markov chain X-n(x). Cramer-type moderate deviation expansions as well as a local limit theorem with moderate deviations are proved for the couple (X-n(x), sigma(G(n), x)) with a target function phi on the Markov chain X-n(x).
引用
收藏
页码:2691 / 2750
页数:60
相关论文
共 50 条
  • [1] Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices
    Xiao, Hui
    Grama, Ion
    Liu, Quansheng
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (03) : 627 - 646
  • [2] Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices
    Hui Xiao
    Ion Grama
    Quansheng Liu
    Science China Mathematics, 2024, 67 : 627 - 646
  • [3] Berry-Esseen bounds and moderate deviations for random walks on GLd(R)
    Xiao, Hui
    Grama, Ion
    Liu, Quansheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 142 : 293 - 318
  • [4] Berry-Esseen Bounds with Targets and Local Limit Theorems for Products of Random Matrices
    Dinh, Tien-Cuong
    Kaufmann, Lucas
    Wu, Hao
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
  • [5] Berry-Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk
    Bui, Thi thuy
    Grama, Ion
    Liu, Quansheng
    BERNOULLI, 2024, 30 (02) : 1401 - 1415
  • [6] The Berry-Esseen bound for student's statistic
    Bentkus, V
    Gotze, F
    ANNALS OF PROBABILITY, 1996, 24 (01) : 491 - 503
  • [7] The Berry-Esseen bound for character ratios
    Shao, QM
    Su, ZG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (07) : 2153 - 2159
  • [8] Berry-Esseen bound of sample quantiles for φ-mixing random variables
    Yang, Wenzhi
    Wang, Xuejun
    Li, Xiaoqin
    Hu, Shuhe
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 451 - 462
  • [9] The Berry-Esseen bound for Studentized statistics
    Wang, QY
    Jing, BY
    Zhao, LC
    ANNALS OF PROBABILITY, 2000, 28 (01) : 511 - 535
  • [10] On the dependence of the Berry-Esseen bound on dimension
    Bentkus, V
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 113 (02) : 385 - 402