KHOVANOV HOMOLOGY AND RASMUSSEN'S s-INVARIANTS FOR PRETZEL KNOTS

被引:5
作者
Suzuki, Ryohei
机构
关键词
Pretzel knots; Khovanov homology; Rasmussen's s-invariant; Turner's spectral sequence; slice-Bennequin inequality; SLICE-BENNEQUIN INEQUALITY;
D O I
10.1142/S0218216510008376
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the rational Khovanov homology of a class of pretzel knots by using the spectral sequence constructed by Turner. Moreover, we determine Rasmussen's s-invariant of almost all pretzel knots P(p, q, r) by using Turner's spectral sequence, a sharper slice-Bennequin inequality, and a skein inequality.
引用
收藏
页码:1183 / 1204
页数:22
相关论文
共 9 条
[1]  
Bar-Natan D., 2002, Algebr. Geom. Topol., V2, P337, DOI [10.2140/agt.2002.2.337, DOI 10.2140/AGT.2002.2.337]
[2]   The Rasmussen invariants and the sharper slice-Bennequin inequality on knots [J].
Kawamura, Tomomi .
TOPOLOGY, 2007, 46 (01) :29-38
[3]   A categorification of the Jones polynomial [J].
Khovanov, M .
DUKE MATHEMATICAL JOURNAL, 2000, 101 (03) :359-426
[4]   An endomorphism of the Khovanov invariant [J].
Lee, ES .
ADVANCES IN MATHEMATICS, 2005, 197 (02) :554-586
[5]   Computations of the Ozsvath-Szabo knot concordance invariant [J].
Livingston, C .
GEOMETRY & TOPOLOGY, 2004, 8 :735-742
[6]  
Plamenevskaya O, 2006, MATH RES LETT, V13, P571
[7]  
RASMUSSEN J, INVENT MATH IN PRESS
[8]   Rasmussen invariant, slice-Bennequin inequality, and sliceness of knots [J].
Shumakovitch, Alexander N. .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2007, 16 (10) :1403-1412
[9]   A spectral sequence for Khovanov homology with an application to (3, q)-torus links [J].
Turner, Paul .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (02) :869-884