A FIXED POINT APPROACH TO THE CAUCHY-RASSIAS STABILITY OF GENERAL JENSEN TYPE QUADRATIC-QUADRATIC MAPPINGS

被引:4
作者
Park, Choonkil [1 ]
Gordji, M. Eshaghi [2 ]
Khodaei, H. [2 ]
机构
[1] Hanyang Univ, Dept Math, Res Inst Nat Sci, Seoul 133791, South Korea
[2] Semnan Univ, Dept Math, Semnan, Iran
关键词
Cauchy-Rassias stability; quadratic mapping; fixed point method; C-ASTERISK-ALGEBRA; BANACH MODULES; FUNCTIONAL-EQUATIONS; BEHAVIOR;
D O I
10.4134/BKMS.2010.47.5.987
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the Cauchy-Rassias stability in Banach spaces and also the Cauchy-Rassias stability using the alternative fixed point for the functional equation: f(sx + ty/2 + rz) + f(sx + ty/2 - rz) + f(sx-ty/2 + rz) + f(sx-ty/2 - rz) = s(2)f(x) + t(2)f(y) + 4r(2)f(z) for any fixed nonzero integers s, t, r with r not equal +/- 1.
引用
收藏
页码:987 / 996
页数:10
相关论文
共 43 条
[41]   A Fixed Point Approach to the Stability of a Mean Value Type Functional Equation [J].
Jung, Soon-Mo ;
Lee, Yang-Hi .
MATHEMATICS, 2017, 5 (04)
[42]   Stability Results of the Additive-Quadratic Functional Equations in Random Normed Spaces by Using Direct and Fixed-Point Method [J].
Rani, Asha ;
Devi, Sushma ;
Kumar, Manoj .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (02) :827-843
[43]   APPROXIMATE EULER-LAGRANGE-JENSEN TYPE ADDITIVE MAPPING IN MULTI-BANACH SPACES: A FIXED POINT APPROACH [J].
Moradlou, Fridoun .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (02) :319-333