The overall goal of this research is to develop a material that is able to absorb mechanical shocks. Polycarbonate/ethylene methyl acrylate-multiwalled carbon nanotube (PC/EMA-MWCNTs) nanocomposites have been prepared using the melt-blending method using a micro compounder, and their dynamic impact behavior has been studied. A Split Hopkinson pressure bar instrument has been used for dynamic impact testing of the nanocomposite samples. The impact tests were performed under varying strain rates ranging from 100 to 10 000 seconds(-1). The present study reports the stress-strain properties of PC/EMA-MWCNTs nanocomposites under a high strain rate. Stress tolerance of these nanocomposites was studied to analyze the effectiveness of small amounts of carbon nanotubes for impact/stress absorption in comparison to pure polycarbonate (PC) and polycarbonate/ethylene methyl acrylate [PC/EMA (95/5 wt/wt)] blend samples. It is found that, at concentration levels of 5 phr of MWCNTs, the impact absorption of composites sample increased by 130% and 76% compared to pure PC and PC/EMA (95/5 wt/wt) blend, respectively.