REGULARITY OF MULTIFRACTAL SPECTRA OF CONFORMAL ITERATED FUNCTION SYSTEMS

被引:11
作者
Jaerisch, Johannes [1 ]
Kesseboehmer, Marc [1 ]
机构
[1] Univ Bremen, AG Dynam Syst & Geometry, Math & Informat FB 3, D-28359 Bremen, Germany
关键词
DIRECTED MARKOV SYSTEMS; CONTINUED FRACTIONS; DIMENSION; SETS;
D O I
10.1090/S0002-9947-2010-05326-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate multifractal regularity for infinite conformal iterated function systems (cIFS). That is, we determine to what extent the multifractal spectrum depends continuously on the cIFS and its thermodynamic potential. For this we introduce the notion of regular convergence for families of cIFS not necessarily sharing the same index set, which guarantees the convergence of the multifractal spectra on the interior of their domain. In particular, we obtain an Exhausting Principle for infinite cIFS allowing us to carry over results for finite to infinite systems, and in this way to establish a multifractal analysis without the usual regularity conditions. Finally, we discuss the connections to the X-topology introduced by Roy and Urbanski.
引用
收藏
页码:313 / 330
页数:18
相关论文
共 50 条
[21]   Holder Parameterization of Iterated Function Systems and a Self-Affine Phenomenon [J].
Badger, Matthew ;
Vellis, Vyron .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2021, 9 (01) :90-119
[22]   A CHARACTERIZATION OF HYPERBOLIC AFFINE ITERATED FUNCTION SYSTEMS [J].
Atkins, Ross ;
Barnsley, Michael F. ;
Vince, Andrew ;
Wilson, David C. .
TOPOLOGY PROCEEDINGS, VOL 36, 2010, 36 :189-211
[23]   Multifractal spectra and multifractal zeta-functions [J].
Mijovic, V. ;
Olsen, L. .
AEQUATIONES MATHEMATICAE, 2017, 91 (01) :21-82
[24]   Continuity of the Hausdorff Measure of Continued Fractions and Countable Alphabet Iterated Function Systems [J].
Urbanski, Mariusz ;
Zdunik, Anna .
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2016, 28 (01) :261-286
[25]   ON TOPOLOGICAL ENTROPY AND TOPOLOGICAL PRESSURE OF NON-AUTONOMOUS ITERATED FUNCTION SYSTEMS [J].
Ghane, Fatemeh H. ;
Sarkooh, Javad Nazarian .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) :1561-1597
[26]   Thermodynamic Formalism for General Iterated Function Systems with Measures [J].
Brasil, Jader E. ;
Oliveira, Elismar R. ;
Souza, Rafael Rigao .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)
[27]   ON ITERATED FUNCTION SYSTEMS WITH PLACE-DEPENDENT PROBABILITIES [J].
Barany, Balazs .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (01) :419-432
[28]   Intrinsic Diophantine approximation for overlapping iterated function systems [J].
Baker, Simon .
MATHEMATISCHE ANNALEN, 2024, 388 (03) :3259-3297
[29]   Iterated function systems of logistic maps: synchronization and intermittency [J].
Abbasi, Neda ;
Gharaei, Masoumeh ;
Homburg, Ale Jan .
NONLINEARITY, 2018, 31 (08) :3880-3913
[30]   Weakly contractive iterated function systems and beyond: a manual [J].
Lesniak, Krzysztof ;
Snigireva, Nina ;
Strobin, Filip .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (08) :1114-1173