REGULARITY OF MULTIFRACTAL SPECTRA OF CONFORMAL ITERATED FUNCTION SYSTEMS

被引:11
|
作者
Jaerisch, Johannes [1 ]
Kesseboehmer, Marc [1 ]
机构
[1] Univ Bremen, AG Dynam Syst & Geometry, Math & Informat FB 3, D-28359 Bremen, Germany
关键词
DIRECTED MARKOV SYSTEMS; CONTINUED FRACTIONS; DIMENSION; SETS;
D O I
10.1090/S0002-9947-2010-05326-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate multifractal regularity for infinite conformal iterated function systems (cIFS). That is, we determine to what extent the multifractal spectrum depends continuously on the cIFS and its thermodynamic potential. For this we introduce the notion of regular convergence for families of cIFS not necessarily sharing the same index set, which guarantees the convergence of the multifractal spectra on the interior of their domain. In particular, we obtain an Exhausting Principle for infinite cIFS allowing us to carry over results for finite to infinite systems, and in this way to establish a multifractal analysis without the usual regularity conditions. Finally, we discuss the connections to the X-topology introduced by Roy and Urbanski.
引用
收藏
页码:313 / 330
页数:18
相关论文
共 50 条
  • [1] Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems
    Hanus, P
    Mauldin, RD
    Urbanski, M
    ACTA MATHEMATICA HUNGARICA, 2002, 96 (1-2) : 27 - 98
  • [2] Thermodynamic Formalism and Multifractal Analysis of Conformal Infinite Iterated Function Systems
    Pawel Hanus
    R. Daniel Mauldin
    Mariusz Urbański
    Acta Mathematica Hungarica, 2002, 96 : 27 - 98
  • [3] On the dimension spectra of infinite conformal iterated function systems
    Das, Tushar
    Simmons, David
    JOURNAL OF FRACTAL GEOMETRY, 2022, 9 (1-2) : 73 - 87
  • [4] Regularity properties of Hausdorff dimension in infinite conformal iterated function systems
    Roy, M
    Urbanski, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1961 - 1983
  • [5] Conformal iterated function systems with overlaps
    Deng, Qi-Rong
    Ngai, Sze-Man
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2011, 26 (01): : 103 - 123
  • [6] Rigidity of conformal iterated function systems
    Mauldin, RD
    Przytycki, F
    Urbanski, M
    COMPOSITIO MATHEMATICA, 2001, 129 (03) : 273 - 299
  • [7] Diophantine analysis of conformal iterated function systems
    Urbanski, M
    MONATSHEFTE FUR MATHEMATIK, 2002, 137 (04): : 325 - 340
  • [8] Diophantine Analysis of Conformal Iterated Function Systems
    Mariusz Urbański
    Monatshefte für Mathematik, 2002, 137 : 325 - 340
  • [9] Porosity in conformal infinite iterated function systems
    Urbanski, M
    JOURNAL OF NUMBER THEORY, 2001, 88 (02) : 283 - 312
  • [10] Separation conditions for conformal iterated function systems
    Lau, Ka-Sing
    Ngai, Sze-Man
    Wang, Xiang-Yang
    MONATSHEFTE FUR MATHEMATIK, 2009, 156 (04): : 325 - 355