Dynamics of an impact oscillator near a degenerate graze

被引:56
作者
Chillingworth, D. R. J. [1 ]
机构
[1] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
关键词
BIFURCATIONS; MOTION; SINGULARITIES; STABILITY; MAPPINGS; FRICTION; BEHAVIOR; GEOMETRY; CHATTER; MODELS;
D O I
10.1088/0951-7715/23/11/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a complete analysis of low-velocity dynamics close to grazing for a generic one degree of freedom impact oscillator. This includes nondegenerate (quadratic) grazing and minimally degenerate (cubic) grazing, corresponding respectively to nondegenerate and degenerate chatter. We also describe the dynamics associated with generic one-parameter bifurcation at a more degenerate (quartic) graze, showing in particular how this gives rise to the often-observed highly convoluted structure in the stable manifolds of chattering orbits. The approach adopted is geometric, using methods from singularity theory.
引用
收藏
页码:2723 / 2748
页数:26
相关论文
共 53 条
[1]   Experimental and numerical verification of bifurcations and chaos in cam-follower impacting systems [J].
Alzate, R. ;
Di Bernardo, M. ;
Montanaro, U. ;
Santini, S. .
NONLINEAR DYNAMICS, 2007, 50 (03) :409-429
[2]  
Andronov A.A., 1959, THEORY OSCILLATORS
[3]  
[Anonymous], 1977, LECT NOTES MATH
[4]  
[Anonymous], 1984, Curves and Singularities
[5]  
Arnold V, 1986, CATASTROPHE THEORY
[6]  
Arnold V.I., 1985, Singularities of Differentiable Maps, V1
[7]  
BABITSKY VI, 1988, THEORY VIBROIMPACT S
[8]  
Brogliato Bernard, 1999, Nonsmooth mechanics
[9]   SEEING - THE MATHEMATICAL VIEWPOINT [J].
BRUCE, JW .
MATHEMATICAL INTELLIGENCER, 1984, 6 (04) :18-25
[10]  
BRUCE JW, 1985, P LOND MATH SOC, V50, P552