A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis

被引:57
|
作者
Edwards, Michael C. [1 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
关键词
item factor analysis; multidimensional item response theory; Markov chain Monte Carlo; RESPONSE THEORY; MODEL; CONVERGENCE; IRT; DISTRIBUTIONS; MCMC;
D O I
10.1007/s11336-010-9161-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show that these methods can be implemented in a flexible way which requires minimal technical sophistication on the part of the end user. After providing an overview of item factor analysis and MCMC, results from several examples (simulated and real) will be discussed. The bulk of these examples focus on models that are problematic for current "gold-standard" estimators. The results demonstrate that it is possible to obtain accurate parameter estimates using MCMC in a relatively user-friendly package.
引用
收藏
页码:474 / 497
页数:24
相关论文
共 50 条
  • [41] Indirect gradient analysis by Markov-chain Monte Carlo
    Walker, Steven C.
    PLANT ECOLOGY, 2015, 216 (05) : 697 - 708
  • [42] Uncovering mental representations with Markov chain Monte Carlo
    Sanborn, Adam N.
    Griffiths, Thomas L.
    Shiffrin, Richard M.
    COGNITIVE PSYCHOLOGY, 2010, 60 (02) : 63 - 106
  • [43] The pharmacokinetics of saquinavir: A Markov chain Monte Carlo population analysis
    Lunn, DJ
    Aarons, L
    JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1998, 26 (01): : 47 - 74
  • [44] Markov Chain Monte Carlo for Automated Face Image Analysis
    Sandro Schönborn
    Bernhard Egger
    Andreas Morel-Forster
    Thomas Vetter
    International Journal of Computer Vision, 2017, 123 : 160 - 183
  • [45] A Markov Chain Monte Carlo approach for the estimation of photovoltaic system parameters
    Laevens, Benjamin P. M.
    Pijpers, Frank P.
    Boonstra, Harm Jan
    Sark, Wilfried G. J. H. M.
    ten Bosch, Olav
    SOLAR ENERGY, 2023, 265
  • [46] A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    Cowles, MK
    Rosenthal, JS
    STATISTICS AND COMPUTING, 1998, 8 (02) : 115 - 124
  • [47] Importance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach
    Parpas, Panos
    Ustun, Berk
    Webster, Mort
    Quang Kha Tran
    INFORMS JOURNAL ON COMPUTING, 2015, 27 (02) : 358 - 377
  • [48] The Pharmacokinetics of Saquinavir: A Markov Chain Monte Carlo Population Analysis
    David J. Lunn
    Leon Aarons
    Journal of Pharmacokinetics and Biopharmaceutics, 1998, 26 : 47 - 74
  • [49] Indirect gradient analysis by Markov-chain Monte Carlo
    Steven C. Walker
    Plant Ecology, 2015, 216 : 697 - 708
  • [50] A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    MARY KATHRYN COWLES
    JEFFREY S. ROSENTHAL
    Statistics and Computing, 1998, 8 : 115 - 124