A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis

被引:57
|
作者
Edwards, Michael C. [1 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
关键词
item factor analysis; multidimensional item response theory; Markov chain Monte Carlo; RESPONSE THEORY; MODEL; CONVERGENCE; IRT; DISTRIBUTIONS; MCMC;
D O I
10.1007/s11336-010-9161-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show that these methods can be implemented in a flexible way which requires minimal technical sophistication on the part of the end user. After providing an overview of item factor analysis and MCMC, results from several examples (simulated and real) will be discussed. The bulk of these examples focus on models that are problematic for current "gold-standard" estimators. The results demonstrate that it is possible to obtain accurate parameter estimates using MCMC in a relatively user-friendly package.
引用
收藏
页码:474 / 497
页数:24
相关论文
共 50 条
  • [31] Explicit error bounds for Markov chain Monte Carlo
    Rudolf, D.
    DISSERTATIONES MATHEMATICAE, 2012, (485) : 5 - +
  • [32] Markov chain Monte Carlo methods: an introductory example
    Klauenberg, Katy
    Elster, Clemens
    METROLOGIA, 2016, 53 (01) : S32 - S39
  • [33] Pairwise clustering using a Monte Carlo Markov Chain
    Stosic, Borko D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (12) : 2373 - 2382
  • [34] Ensemble preconditioning for Markov chain Monte Carlo simulation
    Leimkuhler, Benedict
    Matthews, Charles
    Weare, Jonathan
    STATISTICS AND COMPUTING, 2018, 28 (02) : 277 - 290
  • [35] Reflections on Bayesian inference and Markov chain Monte Carlo
    Craiu, Radu, V
    Gustafson, Paul
    Rosenthal, Jeffrey S.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (04): : 1213 - 1227
  • [36] Transdimensional transformation based Markov chain Monte Carlo
    Das, Moumita
    Bhattacharya, Sourabh
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2019, 33 (01) : 87 - 138
  • [37] Markov chain Monte Carlo algorithms with sequential proposals
    Park, Joonha
    Atchade, Yves
    STATISTICS AND COMPUTING, 2020, 30 (05) : 1325 - 1345
  • [38] VMCMC: a graphical and statistical analysis tool for Markov chain Monte Carlo traces
    Raja H. Ali
    Mikael Bark
    Jorge Miró
    Sayyed A. Muhammad
    Joel Sjöstrand
    Syed M. Zubair
    Raja M. Abbas
    Lars Arvestad
    BMC Bioinformatics, 18
  • [39] Slope Stability Analysis Using Bayesian Markov Chain Monte Carlo Method
    Fattahi, Hadi
    Ilghani, Nastaran Zandy
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2020, 38 (03) : 2609 - 2618
  • [40] VMCMC: a graphical and statistical analysis tool for Markov chain Monte Carlo traces
    Ali, Raja H.
    Bark, Mikael
    Miro, Jorge
    Muhammad, Sayyed A.
    Sjostrand, Joel
    Zubair, Syed M.
    Abbas, Raja M.
    Arvestad, Lars
    BMC BIOINFORMATICS, 2017, 18