A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis

被引:57
|
作者
Edwards, Michael C. [1 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
关键词
item factor analysis; multidimensional item response theory; Markov chain Monte Carlo; RESPONSE THEORY; MODEL; CONVERGENCE; IRT; DISTRIBUTIONS; MCMC;
D O I
10.1007/s11336-010-9161-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show that these methods can be implemented in a flexible way which requires minimal technical sophistication on the part of the end user. After providing an overview of item factor analysis and MCMC, results from several examples (simulated and real) will be discussed. The bulk of these examples focus on models that are problematic for current "gold-standard" estimators. The results demonstrate that it is possible to obtain accurate parameter estimates using MCMC in a relatively user-friendly package.
引用
收藏
页码:474 / 497
页数:24
相关论文
共 50 条
  • [1] A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis
    Michael C. Edwards
    Psychometrika, 2010, 75 : 474 - 497
  • [2] A straightforward approach to Markov chain Monte Carlo methods for item response models
    Patz, RJ
    Junker, BW
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 1999, 24 (02) : 146 - 178
  • [3] Stochastic Gradient Markov Chain Monte Carlo
    Nemeth, Christopher
    Fearnhead, Paul
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (533) : 433 - 450
  • [4] Multivariate output analysis for Markov chain Monte Carlo
    Vats, Dootika
    Flegal, James M.
    Jones, Galin L.
    BIOMETRIKA, 2019, 106 (02) : 321 - 337
  • [5] A Comparison of Penalized Maximum Likelihood Estimation and Markov Chain Monte Carlo Techniques for Estimating Confirmatory Factor Analysis Models With Small Sample Sizes
    Luedtke, Oliver
    Ulitzsch, Esther
    Robitzsch, Alexander
    FRONTIERS IN PSYCHOLOGY, 2021, 12
  • [6] Markov chain Monte Carlo estimation of item parameters for the generalized graded unfolding model
    de la Torre, J
    Stark, S
    Chernyshenko, OS
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2006, 30 (03) : 216 - 232
  • [7] Markov Chain Monte Carlo for Automated Face Image Analysis
    Schonborn, Sandro
    Egger, Bernhard
    Morel-Forster, Andreas
    Vetter, Thomas
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2017, 123 (02) : 160 - 183
  • [8] A geometric approach to transdimensional Markov chain Monte Carlo
    Petris, G
    Tardella, L
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (04): : 469 - 482
  • [9] Convergence Diagnostics for Markov Chain Monte Carlo
    Roy, Vivekananda
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 7, 2020, 2020, 7 : 387 - 412
  • [10] Markov chain Monte Carlo estimation of quantiles
    Doss, Charles R.
    Flegal, James M.
    Jones, Galin L.
    Neath, Ronald C.
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2448 - 2478