Cycling performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques

被引:16
作者
Sharifi, Hossein [1 ]
Mosallanejad, Behrooz [2 ]
Mohammadzad, Mohammadkhalil [1 ]
Hosseini-Hosseinabad, Seyed Morteza [1 ]
Ramakrishna, Seeram [3 ]
机构
[1] Sharif Univ Technol, Dept Mat Sci & Engn, Azadi Ave, Tehran, Iran
[2] Amirkabir Univ Technol, Fac Chem, Tehran Polytech, Tehran, Iran
[3] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1,POB 117576, Singapore, Singapore
关键词
Li-ion batteries; Solid electrolyte interphase (SEI); Performance degradation; Aging mechanism; LITHIUM-ION BATTERIES; CAPACITY FADING MECHANISM; LI-ION; HIGH-POWER; AGING MECHANISMS; LIFEPO4/C COMPOSITE; CARBON MATERIALS; GRAPHITE; CHARGE; SIMULATION;
D O I
10.1007/s11581-021-04258-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, cycling-induced aging occurring in 18650-type LiFePO4/graphite full cells at different C-rates is studied extensively. The mechanism of performance degradation is investigated using a combination of electrochemical and microstructural analyses. Half-cell studies are carried out after dismantling the full cells, using fresh and cycled LiFePO4 cathode and graphite anode to independently study them. The results show that the capacity of LiFePO4 electrodes is significantly recovered. The rate of capacity fading in the discharge state considered as irreversible capacity in the graphite is higher than LiFePO4 half cells, indicating a greater degradation in the performance of this electrode. At relatively high current rates, this phenomenon is mainly attributed to the instability of the electrode/electrolyte interface and the solid electrolyte interphase (SEI) layer, causing the formation of active lithium ion-impermeable covering layer on the anode surface that strongly influences the cyclic aging. As a result, significant consumption of inventory active lithium ions occurred at relatively high current rates measured by half-cell studies. Forming thick covering layer and subsequently separation between active materials, which lead to the loss of electrical contact among them, result in electrode deactivation. To confirm this claim, various morphological, structural, and electrochemical analyses are employed.
引用
收藏
页码:213 / 228
页数:16
相关论文
共 53 条
  • [1] The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling
    An, Seong Jin
    Li, Jianlin
    Daniel, Claus
    Mohanty, Debasish
    Nagpure, Shrikant
    Wood, David L., III
    [J]. CARBON, 2016, 105 : 52 - 76
  • [2] Degradation diagnosis of lithium-ion batteries with a LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 blended cathode using dV/dQ curve analysis
    Ando, Keisuke
    Matsuda, Tomoyuki
    Imamura, Daichi
    [J]. JOURNAL OF POWER SOURCES, 2018, 390 : 278 - 285
  • [3] Differential voltage analyses of high-power, lithium-ion cells 1. Technique and application
    Bloom, I
    Jansen, AN
    Abraham, DP
    Knuth, J
    Jones, SA
    Battaglia, VS
    Henriksen, GL
    [J]. JOURNAL OF POWER SOURCES, 2005, 139 (1-2) : 295 - 303
  • [4] Investigation of aging mechanisms of high power Li-ion cells used for hybrid electric vehicles
    Bourlot, Sandrine
    Blanchard, Philippe
    Robert, Stephanie
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (16) : 6841 - 6846
  • [5] Main aging mechanisms in Li ion batteries
    Broussely, M
    Biensan, P
    Bonhomme, F
    Blanchard, P
    Herreyre, S
    Nechev, K
    Staniewicz, RJ
    [J]. JOURNAL OF POWER SOURCES, 2005, 146 (1-2) : 90 - 96
  • [6] The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes
    Cho, Yung-Da
    Fey, George Ting-Kuo
    Kao, Hsien-Ming
    [J]. JOURNAL OF POWER SOURCES, 2009, 189 (01) : 256 - 262
  • [7] Electronically conductive phospho-olivines as lithium storage electrodes
    Chung, SY
    Bloking, JT
    Chiang, YM
    [J]. NATURE MATERIALS, 2002, 1 (02) : 123 - 128
  • [8] Incremental capacity analysis and close-to-equilibrium OCV measurements to quantify capacity fade in commercial rechargeable lithium batteries
    Dubarry, Matthieu
    Svoboda, Vojtech
    Hwu, Ruey
    Liaw, Bor Yann
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (10) : A454 - A457
  • [9] Synthesize battery degradation modes via a diagnostic and prognostic model
    Dubarry, Matthieu
    Truchot, Cyril
    Liaw, Bor Yann
    [J]. JOURNAL OF POWER SOURCES, 2012, 219 : 204 - 216
  • [10] Identifying battery aging mechanisms in large format Li ion cells
    Dubarry, Matthieu
    Liaw, Bor Yann
    Chen, Mao-Sung
    Chyan, Sain-Syan
    Han, Kuo-Chang
    Sie, Wun-Tong
    Wu, She-Huang
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (07) : 3420 - 3425