Deep learning for blind structured illumination microscopy

被引:16
作者
Xypakis, Emmanouil [1 ,2 ]
Gosti, Giorgio [1 ,6 ]
Giordani, Taira [1 ,3 ]
Santagati, Raffaele [4 ,5 ]
Ruocco, Giancarlo [1 ]
Leonetti, Marco [1 ,2 ,6 ]
机构
[1] Ist Italiano Tecnol, Ctr Life Nano & Neuro Sci, Viale Regina Elena 291, I-00161 Rome, Italy
[2] D TAILS Srl, I-00161 Rome, Italy
[3] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Univ Bristol, Quantum Engn Technol Labs, Bristol BS8 1FD, Avon, England
[5] Boehringer Ingelheim GmbH & Co KG, Quantum Lab, Doktor Boehringer Gasse 5-11, A-1120 Vienna, Austria
[6] CNR, Inst Nanotechnol, Soft & Living Matter Lab, I-00185 Rome, Italy
基金
欧洲研究理事会;
关键词
DIFFRACTION-LIMIT; RECONSTRUCTION;
D O I
10.1038/s41598-022-12571-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Blind-structured illumination microscopy (blind-SIM) enhances the optical resolution without the requirement of nonlinear effects or pre-defined illumination patterns. It is thus advantageous in experimental conditions where toxicity or biological fluctuations are an issue. In this work, we introduce a custom convolutional neural network architecture for blind-SIM: BS-CNN. We show that BS-CNN outperforms other blind-SIM deconvolution algorithms providing a resolution improvement of 2.17 together with a very high Fidelity (artifacts reduction). Furthermore, BS-CNN proves to be robust in cross-database variability: it is trained on synthetically augmented open-source data and evaluated on experiments. This approach paves the way to the employment of CNN-based deconvolution in all scenarios in which a statistical model for the illumination is available while the specific realizations are unknown or noisy.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] Abbe E., 1873, ARCH MIKROSK ANAT, V9, P413, DOI [10.1007/BF02956173, DOI 10.1007/BF02956173]
  • [2] On the use of deep learning for computational imaging
    Barbastathis, George
    Ozcan, Aydogan
    Situ, Guohai
    [J]. OPTICA, 2019, 6 (08): : 921 - 943
  • [3] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [4] ML-SIM: universal reconstruction of structured illumination microscopy images using transfer learning
    Christensen, Charles N.
    Ward, Edward N.
    Lu, Meng
    Lio, Pietro
    Kaminski, Clemens F.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2021, 12 (05) : 2720 - 2733
  • [5] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307
  • [6] Goodman J. W., 2020, SPECKLE PHENOMENA OP, V2nd ed.
  • [7] Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy
    Gustafsson, MGL
    [J]. JOURNAL OF MICROSCOPY, 2000, 198 (02) : 82 - 87
  • [8] Ultra-high resolution imaging by fluorescence photoactivation localization microscopy
    Hess, Samuel T.
    Girirajan, Thanu P. K.
    Mason, Michael D.
    [J]. BIOPHYSICAL JOURNAL, 2006, 91 (11) : 4258 - 4272
  • [9] Photoacoustic imaging beyond the acoustic diffraction-limit with dynamic speckle illumination and sparse joint support recovery
    Hojman, Eliel
    Chaigne, Thomas
    Solomon, Oren
    Gigan, Sylvain
    Bossy, Emmanuel
    Eldar, Yonina C.
    Katz, Ori
    [J]. OPTICS EXPRESS, 2017, 25 (05): : 4875 - 4886
  • [10] On the Superresolution Capacity of Imagers Using Unknown Speckle Illuminations
    Idier, Jerome
    Labouesse, Simon
    Allain, Marc
    Liu, Penghuan
    Bourguignon, Sebastien
    Sentenac, Anne
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2018, 4 (01): : 87 - 98