Kinetic trapping of 3D-printable cyclodextrin-based poly(pseudo)rotaxane networks

被引:44
作者
Lin, Qianming [1 ]
Li, Longyu [1 ]
Tang, Miao [1 ]
Uenuma, Shuntaro [2 ]
Samanta, Jayanta [1 ]
Li, Shangda [1 ]
Jiang, Xuanfeng [3 ]
Zou, Lingyi [1 ]
Ito, Kohzo [2 ]
Ke, Chenfeng [1 ]
机构
[1] Dartmouth Coll, Dept Chem, Hanover, NH 03755 USA
[2] Univ Tokyo, Dept Adv Mat Sci, 5-1-5 Kashiwanoba, Chiba, Chiba 2778561, Japan
[3] Hubei Univ, Sch Mat & Engn, Key Lab Green Preparat & Applicat Funct Mat, Minist Educ, Wuhan 430062, Peoples R China
来源
CHEM | 2021年 / 7卷 / 09期
关键词
ALPHA-CYCLODEXTRIN; INCLUSION COMPLEXES; DRIVEN; GLYCOL;
D O I
10.1016/j.chempr.2021.06.004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synthetically trapping kinetically varied (super)structures of molecular assemblies and amplifying them to the macroscale is a promising, yet challenging, approach for the advancement of meta-stable materials. Here, we demonstrated a concerted kinetic trapping design to timely resolve a set of transient polypseudorotaxanes in solution and harness a crop of them via micro-crystallization. By installing stopper or speed bump moieties on the polymer axles, meta-stable polypseudorotaxanes with segmented cyclodextrin blocks were hierarchically amplified into crystalline networks of different crosslinking densities at mesoscale and viscoelastic hydrogels with 3D-printability in bulk. We demonstrated simultaneous 3D-printing of two polypseudorotaxane networks from one reactive ensemble and their conversion to heterogeneous polyrotaxane monoliths. Spatially programming the macroscale shapes of these heterogeneous polyrotaxanes enabled the construction of moisture-responsive actuators, in which the shape morphing originated from the different numbers of cyclodextrins interlocked in these polyrotaxane networks.
引用
收藏
页码:2442 / 2459
页数:18
相关论文
共 44 条
[1]  
Arazoe H, 2016, NAT MATER, V15, P1084, DOI [10.1038/nmat4693, 10.1038/NMAT4693]
[2]   Thermodynamic limit for synthesis of metastable inorganic materials [J].
Aykol, Muratahan ;
Dwaraknath, Shyam S. ;
Sun, Wenhao ;
Persson, Kristin A. .
SCIENCE ADVANCES, 2018, 4 (04)
[3]   CRYSTAL-STRUCTURE AND STABILITY OF A DNA DUPLEX CONTAINING A(ANTI).G(SYN) BASE-PAIRS [J].
BROWN, T ;
LEONARD, GA ;
BOOTH, ED ;
CHAMBERS, J .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 207 (02) :455-457
[4]   alpha Cyclodextrin/polyethylene glycolpolyrotaxane: A study of the threading process [J].
Ceccato, M ;
LoNostro, P ;
Baglioni, P .
LANGMUIR, 1997, 13 (09) :2436-2439
[5]  
Chen JW, 2018, NAT CHEM, V10, P132, DOI [10.1038/NCHEM.2887, 10.1038/nchem.2887]
[6]  
Cheng CY, 2015, NAT NANOTECHNOL, V10, P547, DOI [10.1038/NNANO.2015.96, 10.1038/nnano.2015.96]
[7]   Bimodal Crystallization Kinetics of PBT/PTHF Segmented Block Copolymers: Impact of the Chain Rigidity [J].
de Almeida, Andre ;
Nebouy, Matthias ;
Baeza, Guilhem P. .
MACROMOLECULES, 2019, 52 (03) :1227-1240
[8]   α-Cyclodextrin-Based Polypseudorotaxane Hydrogels [J].
Dominski, Adrian ;
Konieczny, Tomasz ;
Kurcok, Piotr .
MATERIALS, 2020, 13 (01) :133
[9]   Highly Elastic Slide-Ring Hydrogel with Good Recovery as Stretchable Supercapacitor [J].
Feng, Li ;
Jia, Shan-Shan ;
Chen, Yong ;
Liu, Yu .
CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (62) :14080-14084
[10]  
Foy JT, 2017, NAT NANOTECHNOL, V12, P540, DOI [10.1038/nnano.2017.28, 10.1038/NNANO.2017.28]