Trigonometric identities, angular Schrodinger equations and a new family of solvable models

被引:16
作者
Jakubsky, V [1 ]
Znojil, M
Luís, EA
Kleefeld, F
机构
[1] Inst Nucl Phys, Rez, Czech Republic
[2] Czech Tech Univ, FNSPE, Prague, Czech Republic
[3] IST, CEMAT, Lisbon, Portugal
[4] IST, CFIF, Lisbon, Portugal
关键词
D O I
10.1016/j.physleta.2004.11.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Angular parts of certain solvable models are studied. We find that an extension of this class may be based on suitable trigonometric identities. The new exactly solvable Hamiltonians are shown to describe interesting two- and three-particle systems of the generalized Calogero, Wolfes and Winternitz-Smorodinsky types. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:154 / 159
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 1971, TABLE INTEGRALS SERI
[3]   Exactly solvable potentials of Calogero type for q-deformed Coxeter groups [J].
Fring, A ;
Korff, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (45) :10931-10949
[4]   ON HIGHER SYMMETRIES IN QUANTUM MECHANICS [J].
FRIS, J ;
MANDROSOV, V ;
SMORODINSKY, YA ;
UHLIR, M ;
WINTERNITZ, P .
PHYSICS LETTERS, 1965, 16 (03) :354-+
[5]   PT-symmetric calogero-type model [J].
Jakubsky, V .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (01) :67-69
[6]   QUANTUM INTEGRABLE SYSTEMS RELATED TO LIE-ALGEBRAS [J].
OLSHANETSKY, MA ;
PERELOMOV, AM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1983, 94 (06) :313-404
[7]   Comments on the quantum mechanics of the anharmonic oscillator. [J].
Poeschl, G. ;
Teller, E. .
ZEITSCHRIFT FUR PHYSIK, 1933, 83 (3-4) :143-151
[8]   EXACT SOLVABILITY OF THE CALOGERO AND SUTHERLAND MODELS [J].
RUHL, W ;
TURBINER, A .
MODERN PHYSICS LETTERS A, 1995, 10 (29) :2213-2221
[9]   Exact solvability of superintegrable systems [J].
Tempesta, P ;
Turbiner, AV ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (09) :4248-4257
[10]   Hidden algebra of three-body integrable systems [J].
Turbiner, A .
MODERN PHYSICS LETTERS A, 1998, 13 (18) :1473-1483