Commutator Invariant Subgroups of Abelian Groups

被引:6
作者
Chekhlov, A. R. [1 ]
机构
[1] Tomsk VV Kuibyshev State Univ, Tomsk 634050, Russia
关键词
endomorphism ring; fully invariant subgroup; commutator of an endomorphism; E-center; E-commutant;
D O I
10.1007/s11202-010-0092-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the commutator invariant subgroups of a nonreduced abelian group. We find out when all commutator invariant subgroups of a separable group and an algebraically compact torsion-free group are fully invariant and describe the E-centers and E-commutants of these and some other groups.
引用
收藏
页码:926 / 934
页数:9
相关论文
共 12 条
[1]   On weakly quasipure injective groups [J].
Chekhlov, A. R. .
MATHEMATICAL NOTES, 2007, 81 (3-4) :379-391
[2]   Abelian groups with normal endomorphism rings [J].
Chekhlov, A. R. .
ALGEBRA AND LOGIC, 2009, 48 (04) :298-308
[3]   Separable and vector groups whose projectively invariant subgroups are fully invariant [J].
Chekhlov, A. R. .
SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (04) :748-756
[4]  
Chekhlov A. R., 2007, J MATH SCI, V143, P3517
[5]  
Chekhlov A.R, 2010, J MATH SCI-U TOKYO, V164, P143, DOI [10.1007/s10958-009-9743-1, DOI 10.1007/S10958-009-9743-1]
[6]   On a class of endotransitive groups [J].
Chekhlov, AR .
MATHEMATICAL NOTES, 2001, 69 (5-6) :863-867
[7]   On decomposable fully transitive torsion-free groups [J].
Chekhlov, AR .
SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (03) :605-609
[8]  
CHEKHLOV AR, 1981, ABELIAN GROUPS MODUL, P240
[9]  
Fuchs L., 1970, INFINITE ABELIAN GRO, V1
[10]  
FUCHS L, 1973, INFINITE ABELIAN GRO, V2