Pricing pension plans under jump-diffusion models for the salary

被引:4
作者
Carmen Calvo-Garrido, M. [1 ]
Vazquez, Carlos [1 ]
机构
[1] Univ A Coruna, Dept Math, La Coruna 15071, Spain
关键词
Pension plans; Jump-diffusion models; Option pricing; Complementarity problem; Numerical methods; Augmented Lagrangian Active Set formulation; ORDER CHARACTERISTICS/FINITE ELEMENTS; AMERICAN OPTIONS; NUMERICAL-METHODS; EARLY RETIREMENT; FINITE-ELEMENT; VALUATION; EQUATIONS; RETURNS; SCHEME;
D O I
10.1016/j.camwa.2014.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the valuation of a defined benefit pension plan in the presence of jumps in the underlying salary and including the possibility of early retirement. We will consider that the salary follows a jump-diffusion model, thus giving rise to a partial integro-differential equation (PIDE). After posing the model, we propose the appropriate numerical methods to solve the FIDE problem. These methods mainly consists of Lagrange-Galerkin discretizations combined with augmented Lagrangian active set techniques and with the explicit treatment of the integral term. Finally, we compare the numerical results with those ones obtained with Monte Carlo techniques. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1933 / 1944
页数:12
相关论文
共 31 条
[1]   Numerical valuation of options with jumps in the underlying [J].
Almendral, A ;
Oosterlee, CW .
APPLIED NUMERICAL MATHEMATICS, 2005, 53 (01) :1-18
[2]  
Andersen L., 2000, Review of derivatives research, V4, P231
[3]  
Bercovier M., 1983, APPL MATH MODEL, V7, P796
[4]  
Bermúdez A, 2007, INT SER NUMER MATH, V154, P95
[5]   Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements.: Part II:: Fully discretized scheme and quadrature formulas [J].
Bermudez, Alfredo ;
Nogueiras, Maria R. ;
Vazquez, Carlos .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :1854-1876
[6]   Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements.: Part I:: Time discretization [J].
Bermudez, Alfredo ;
Nogueiras, Maria R. ;
Vazquez, Carlos .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :1829-1853
[7]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[8]   MATHEMATICAL ANALYSIS AND NUMERICAL METHODS FOR PRICING PENSION PLANS ALLOWING EARLY RETIREMENT [J].
Carmen Calvo-Garrido, M. ;
Pascucci, Andrea ;
Vazquez, Carlos .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2013, 73 (05) :1747-1767
[9]   The fine structure of asset returns: An empirical investigation [J].
Carr, P ;
Geman, H ;
Madan, DB ;
Yor, M .
JOURNAL OF BUSINESS, 2002, 75 (02) :305-332
[10]   A semi-Lagrangian approach for American Asian options under jump diffusion [J].
D'Halluin, Y ;
Forsyth, PA ;
Labahn, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (01) :315-345