Model Predictive Control of Stochastic Linear Systems with Probability Constraints

被引:4
|
作者
Caruntu, C. F. [1 ]
Velandia-Cardenas, C. C. [2 ]
Liu, X. [3 ]
Vargas, A. N. [4 ]
机构
[1] Gheorghe Asachi Tech Univ Iasi, Dept Automat Control & Appl Informat, Str Prof D Mangeron 27, Iasi, Romania
[2] Univ Santo Tomas, Fac Elect Engn, Res Grp MEM, Cra 9 51-11, Bogota, Colombia
[3] Xian Univ Technol, Sch Automat & Informat Engn, Dept Elect Engn, Xian 710048, Shaanxi, Peoples R China
[4] Univ Tecnol Fed Parana, UTFPR, Av Alberto Carazzai 1640, BR-86300000 Cornelio Procopio, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
probability constraints; stochastic systems; linear systems; control;
D O I
10.15837/ijccc.2018.6.3383
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a strategy for computing model predictive control of linear Gaussian noise systems with probability constraints. As usual, constraints are taken on the system state and control input. The novelty relies on setting bounds on the underlying cumulative probability distribution, and showing that the model predictive control can be computed in an efficient manner through these novel boundsan application confirms this assertion. Indeed real-time experiments were carried out to control a direct current (DC) motor. The corresponding data show the effectiveness and usefulness of the approach.
引用
收藏
页码:927 / 937
页数:11
相关论文
共 50 条
  • [21] Distributed Model Predictive Control and Optimization for Linear Systems With Global Constraints and Time-Varying Communication
    Jin, Bo
    Li, Huiping
    Yan, Weisheng
    Cao, Ming
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (07) : 3393 - 3400
  • [22] A Stochastic Model Predictive Control Framework for Stationary Battery Systems
    Kumar, Ranjeet
    Wenzel, Michael J.
    Ellis, Matthew J.
    ElBsat, Mohammad N.
    Drees, Kirk H.
    Zavala, Victor M.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (04) : 4397 - 4406
  • [23] Distributed stochastic MPC for linear systems with probabilistic constraints and quantisation
    Zhao, Guanglei
    Yang, Shida
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (03) : 396 - 404
  • [24] Convergence of Stochastic Nonlinear Systems and Implications for Stochastic Model-Predictive Control
    Munoz-Carpintero, Diego
    Cannon, Mark
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (06) : 2832 - 2839
  • [25] Learning-Based Adaptive Control for Stochastic Linear Systems With Input Constraints
    Siriya, Seth
    Zhu, Jingge
    Nesic, Dragan
    Pu, Ye
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1273 - 1278
  • [26] Gaussian process model predictive control of unknown non-linear systems
    Cao, Gang
    Lai, Edmund M. -K.
    Alam, Fakhrul
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (05) : 703 - 713
  • [27] Distributed stochastic model predictive control for cyber-physical systems with multiple state delays and probabilistic saturation constraints
    Zhang, Langwen
    Wang, Bohui
    Li, Yuanlong
    Tang, Yang
    AUTOMATICA, 2021, 129 (129)
  • [28] Distributed model predictive control of linear systems with persistent disturbances
    Trodden, Paul
    Richards, Arthur
    INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (08) : 1653 - 1663
  • [29] Efficient and smooth robust model predictive control for stochastic switching systems
    Wu, Tong
    Zhang, Lixian
    Lu, Shengao
    Che, Weiming
    Xu, Kaixin
    AUTOMATICA, 2024, 163
  • [30] Lyapunov-based model predictive control of stochastic nonlinear systems
    Mahmood, Maaz
    Mhaskar, Prashant
    AUTOMATICA, 2012, 48 (09) : 2271 - 2276