Pattern selection in the Schnakenberg equations: From normal to anomalous diffusion

被引:12
作者
Khudhair, Hatim K. [1 ]
Zhang, Yanzhi [1 ]
Fukawa, Nobuyuki [2 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
[2] Missouri Univ Sci & Technol, Dept Business & Informat Technol, Rolla, MO 65409 USA
基金
美国国家科学基金会;
关键词
anomalous diffusion; fractional Laplacian; pattern formation; Schnakenberg equations; Turing instability; BIFURCATION-ANALYSIS; DYNAMICS; MODEL; STABILITY;
D O I
10.1002/num.22842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Pattern formation in the classical and fractional Schnakenberg equations is studied to understand the nonlocal effects of anomalous diffusion. Starting with linear stability analysis, we find that if the activator and inhibitor have the same diffusion power, the Turing instability space depends only on the ratio of diffusion coefficients kappa 1/kappa 2. However, smaller diffusive powers might introduce larger unstable wave numbers with wider band, implying that the patterns may be more chaotic in the fractional cases. We then apply a weakly nonlinear analysis to predict the parameter regimes for spot, stripe, and mixed patterns in the Turing space. Our numerical simulations confirm the analytical results and demonstrate the differences of normal and anomalous diffusion on pattern formation. We find that in the presence of superdiffusion the patterns exhibit multiscale structures. The smaller the diffusion powers, the larger the unstable wave numbers, and the smaller the pattern scales.
引用
收藏
页码:1843 / 1860
页数:18
相关论文
共 39 条
[1]  
Arag��n J., 1998, FORMA, V13, P145
[2]   Modeling the skin pattern of fishes [J].
Barrio, Rafael A. ;
Baker, Ruth E. ;
Vaughan, Benjamin, Jr. ;
Tribuzy, Karla ;
de Carvalho, Marcelo R. ;
Bassanezi, Rodney ;
Maini, Philip K. .
PHYSICAL REVIEW E, 2009, 79 (03)
[3]  
Beentjes C.H., 2015, Pattern formation analysis in the Schnakenberg model
[4]   Fourier spectral methods for fractional-in-space reaction-diffusion equations [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Burrage, Kevin .
BIT NUMERICAL MATHEMATICS, 2014, 54 (04) :937-954
[5]   On the Order of the Fractional Laplacian in Determining the Spatio-Temporal Evolution of a Space-Fractional Model of Cardiac Electrophysiology [J].
Cusimano, Nicole ;
Bueno-Orovio, Alfonso ;
Turner, Ian ;
Burrage, Kevin .
PLOS ONE, 2015, 10 (12)
[6]   Front dynamics in reaction-diffusion systems with Levy flights: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)
[7]   Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrodinger equation [J].
Duo, Siwei ;
Zhang, Yanzhi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (11) :2257-2271
[8]   Amplitude equation for a diffusion-reaction system: The reversible Sel'kov model [J].
Dutt, A. K. .
AIP ADVANCES, 2012, 2 (04)
[9]   Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems [J].
Gafiychuk, V. ;
Datsko, B. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1101-1107
[10]   Spatiotemporal pattern formation in fractional reaction-diffusion systems with indices of different order [J].
Gafiychuk, V. V. ;
Datsko, B. Y. .
PHYSICAL REVIEW E, 2008, 77 (06)