A porous-rib flow field for performance enhancement in proton exchange membrane fuel cells

被引:22
作者
Deng, Shipei [1 ]
Li, Yinshi [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermo Fluid Sci & Engn, Minist Educ, Xi'an 710049, Shaanxi, Peoples R China
关键词
PEMFC; Flow field; Mass transport; Porous-rib; Uniformity; METAL FOAM; NUMERICAL-ANALYSIS; DESIGN; VEHICLE;
D O I
10.1016/j.enconman.2022.115707
中图分类号
O414.1 [热力学];
学科分类号
摘要
Concentration loss under solid rib induced by oxygen starvation and water flooding in conventional solid-rib flow fields (sr-FFs) limits the cell performance. Herein, a porous-rib flow field (pr-FF) is proposed for proton exchange membrane fuel cells (PEMFCs) to improve the gas transport and water removal under the ribs. The multi-physical processes and cell performance are investigated via a three-dimensional multi-phase PEMFC model. Numerical results show that the limiting current density and peak power density for the pr-FF-based PEMFC are increased by 15% and 9% respectively, while the pressure drop is reduced by 38%. A higher oxygen concentration and a lower liquid saturation under the porous ribs are obtained, in addition to the improved uniformities of oxygen concentration and current density. The pr-FF-based PEMFC is suggested to operate under a fully humidified condition for yielding a higher performance, where the peak power density is increased by 14% corresponding to the increase in cathode inlet humidity from 0.5 to 1.0. More interesting, the porous-rib design can enhance the cell performance regardless of the porosity. The proposed pr-FF provides an alternative solution for performance enhancement of PEMFCs by enhancing under-rib mass transport without increasing pumping power.
引用
收藏
页数:12
相关论文
共 41 条
  • [1] An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor
    Afshari, E.
    Mosharaf-Dehkordi, M.
    Rajabian, H.
    [J]. ENERGY, 2017, 118 : 705 - 715
  • [2] Nature inspired flow field designs for proton exchange membrane fuel cell
    Arvay, A.
    French, J.
    Wang, J. -C.
    Peng, X. -H.
    Kannan, A. M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (09) : 3717 - 3726
  • [3] Batteries and fuel cells for emerging electric vehicle markets
    Cano, Zachary P.
    Banham, Dustin
    Ye, Siyu
    Hintennach, Andreas
    Lu, Jun
    Fowler, Michael
    Chen, Zhongwei
    [J]. NATURE ENERGY, 2018, 3 (04): : 279 - 289
  • [4] Numerical investigation on the feasibility of metal foam as flow field in alkaline anion exchange membrane fuel cell
    Cheng, Chaochao
    Yang, Zirong
    Liu, Zhi
    Tongsh, Chasen
    Zhang, Guobin
    Xie, Biao
    He, Shaoqing
    Jiao, Kui
    [J]. APPLIED ENERGY, 2021, 302
  • [5] Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells
    Gostick, Jeffrey T.
    Fowler, Michael W.
    Ioannidis, Marios A.
    Pritzker, Mark D.
    Volfkovich, Y. M.
    Sakars, A.
    [J]. JOURNAL OF POWER SOURCES, 2006, 156 (02) : 375 - 387
  • [6] Modeling and Experimental Validation of Pt Loading and Electrode Composition Effects in PEM Fuel Cells
    Hao, Liang
    Moriyama, Koji
    Gu, Wenbin
    Wang, Chao-Yang
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (08) : F854 - F867
  • [7] Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell
    He, Pu
    Mu, Yu-Tong
    Park, Jae Wan
    Tao, Wen-Quan
    [J]. APPLIED ENERGY, 2020, 277
  • [8] Enhanced gas flow uniformity across parallel channel cathode flow field of Proton Exchange Membrane fuel cells
    Hossain, Mohammad Sajid
    Shabani, Bahman
    Cheung, Chi Pok
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (08) : 5272 - 5283
  • [9] Elucidating the operating behavior of PEM fuel cell with nickel foam as cathode flow field
    Huo Sen
    Shi WeiYu
    Wang RenFang
    Lu BingBing
    Wang Yang
    Jiao Kui
    Hou ZhongJun
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (05) : 1041 - 1056
  • [10] Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor
    Huo, Sen
    Cooper, Nathanial James
    Smith, Travis Lee
    Park, Jae Wan
    Jiao, Kui
    [J]. APPLIED ENERGY, 2017, 203 : 101 - 114