Toward in situ zooplankton detection with a densely connected YOLOV3 model

被引:19
作者
Li, Yan [1 ,2 ,3 ]
Guo, Jiahong [1 ,2 ,3 ,4 ]
Guo, Xiaomin [1 ,5 ]
Zhao, Jinsong [1 ,6 ]
Yang, Yi [1 ,2 ,3 ]
Hu, Zhiqiang [1 ,2 ,3 ]
Jin, Wenming [1 ,2 ,3 ]
Tian, Yu [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China
[3] Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Shenyang Ligong Univ, Sch Automat & Elect Engn, Shenyang 110159, Peoples R China
[6] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110006, Peoples R China
基金
中国国家自然科学基金;
关键词
Zooplankton detection; Deep neural networks; YOLOV3; model; Feature reuse; In situ observation; PLANKTON;
D O I
10.1016/j.apor.2021.102783
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Zooplankton play an important role in the global marine carbon cycle, and as a useful indicator of aquatic health, the distribution and abundance of zooplankton organisms could provide early warning for natural disasters. With the rapid development of the observation sensors and platforms, many advanced detection methods such as deep neural networks are pursued to realize the in situ and autonomous zooplankton observation. However, the features of zooplankton might be lost in the deep neural network transmission due to both convolution and downsampling operations, especially for the subtle features which are critical in the identification of the zooplankton taxonomic group. Therefore, this paper proposed an improved YOLOV3 model with densely connected structures to improve the reusability of the features during transmission in the model. The experiment results demonstrate the performance of the proposed method is more suitable for the in situ zooplankton detection by comparing it with other state-of-the-art models.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Enhanced convolutional neural network for plankton identification and enumeration [J].
Cheng, Kaichang ;
Cheng, Xuemin ;
Wang, Yuqi ;
Bi, Hongsheng ;
Benfield, Mark C. .
PLOS ONE, 2019, 14 (07)
[2]  
Dai J, 2016, OCEANS 2016, DOI [10.1109/OCEANSAP.2016.7485680, DOI 10.1109/OCEANSAP.2016.7485680]
[3]   A Hybrid Convolutional Neural Network for Plankton Classification [J].
Dai, Jialun ;
Yu, Zhibin ;
Zheng, Haiyong ;
Zheng, Bing ;
Wang, Nan .
COMPUTER VISION - ACCV 2016 WORKSHOPS, PT III, 2017, 10118 :102-114
[4]   A Cost-Effective In Situ Zooplankton Monitoring System Based on Novel Illumination Optimization [J].
Du, Zhiqiang ;
Xia, Chunlei ;
Fu, Longwen ;
Zhang, Nan ;
Li, Bowei ;
Song, Jinming ;
Chen, Lingxin .
SENSORS, 2020, 20 (12) :1-22
[5]  
Fu HX, 2018, CHIN CONTR CONF, P9297, DOI 10.23919/ChiCC.2018.8484085
[6]   Digital zooplankton image analysis using the ZooScan integrated system [J].
Gorsky, Gaby ;
Ohman, Mark D. ;
Picheral, Marc ;
Gasparini, Stephane ;
Stemmann, Lars ;
Romagnan, Jean-Baptiste ;
Cawood, Alison ;
Pesant, Stephane ;
Garcia-Comas, Carmen ;
Prejger, Franck .
JOURNAL OF PLANKTON RESEARCH, 2010, 32 (03) :285-303
[7]   Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system [J].
Grosjean, P ;
Picheral, M ;
Warembourg, C ;
Gorsky, G .
ICES JOURNAL OF MARINE SCIENCE, 2004, 61 (04) :518-525
[8]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[9]   DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection [J].
Huang, Zhanchao ;
Wang, Jianlin ;
Fu, Xuesong ;
Yu, Tao ;
Guo, Yongqi ;
Wang, Rutong .
INFORMATION SCIENCES, 2020, 522 (522) :241-258
[10]   Deep Residual Networks for Plankton Classification [J].
Li, Xiu ;
Cui, Zuoying .
OCEANS 2016 MTS/IEEE MONTEREY, 2016,