On Fredholm solvability and on the index of the generalized Neumann problem for an elliptic equation

被引:4
作者
Koshanov, B. [1 ,2 ]
Soldatov, A. [3 ,4 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Abai Kazakh Natl Pedag Univ Almaty, Alma Ata, Kazakhstan
[3] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow, Russia
[4] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
关键词
Higher order elliptic equations; generalized Neumann problem; Fredholm solvability; complementarity condition; formula for the index; PARTIAL-DIFFERENTIAL EQUATIONS; GREEN-FUNCTION REPRESENTATION; BOUNDARY-VALUE PROBLEM; DIRICHLET PROBLEM;
D O I
10.1080/17476933.2021.1958797
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the Fredholm solvability of the generalized Neumann problem for a high-order elliptic equation in the plane. The equivalence of the solvability conditions of the generalized Neumann problem to the complementarity condition (Shapiro-Lopatinsky condition) is proved. The formula for the index of the specified problem in the class C-2l,C-mu (D) over bar is calculated.
引用
收藏
页码:2907 / 2923
页数:17
相关论文
共 24 条
[11]   Green function representation for the Dirichlet problem of the polyharmonic equation in a sphere [J].
Kalmenov, T. Sh. ;
Koshanov, B. D. ;
Nemchenko, M. Y. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (02) :177-183
[12]   Boundary Value Problem with Normal Derivatives for a Higher-Order Elliptic Equation on the Plane [J].
Koshanov, B. D. ;
Soldatov, A. P. .
DIFFERENTIAL EQUATIONS, 2016, 52 (12) :1594-1609
[13]  
Lopatinskii Ya. B., 1953, Ukr. Math. J, V5, P123
[14]   On a Boundary Value Problem for a Higher-Order Elliptic Equation [J].
Malakhova, N. A. ;
Soldatov, A. P. .
DIFFERENTIAL EQUATIONS, 2008, 44 (08) :1111-1118
[15]  
Muskhelishvili N. I., 1972, Boundary problems of functions theory and their applications to mathematical physics
[16]  
NAZAROV SA, 1994, ELLIPTIC PROBLEMS DO
[17]  
Palais R., 1965, Seminar on the Atiyah-Singer index theorem
[18]   Representation of Green's function of the Neumann problem for a multi-dimensional ball [J].
Sadybekov, M. T. ;
Torebek, B. T. ;
Turmetov, B. Kh. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (01) :104-123
[19]   On an explicit form of the Green function of the Robin problem for the Laplace operator in a circle [J].
Sadybekov, Makhmud A. ;
Turmetov, Batirkhan K. ;
Torebek, Berikbol T. .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2015, 6 (03) :163-172
[20]  
Schechter M., 1950, COMMUN PUR APPL MATH, V12, P467